Genome Assembly Background and Strategy

BIOL 7210: Computational Genomics - Spring 2018

Team-1 Members: Kunal Agarwal, Victoria Caban, Vasanta Chivukula, Seonggeon Cho, Siarhei Hladyshau, Hunter Seabolt, Nirav Shah, Tianze Song, Qinwei Zhuang

Bacterial Genomics

Bacterial genomics is the discipline concerning the genome of a bacteria and includes all hereditary information regarding that bacteria.

Bacterial genomics helps study bacterial evolution as well as determine the causative agent in disease outbreaks.

Helps identify bacterial pathogens (and antibiotic resistance) and how these pathogens interact with their host.

As Bioinformaticians, it is our job to decipher this information.

Picture source: Blattner, F. R. et al (2001) Genome sequence of enterohaemorrhagic Escherichia coli O157:H7. *Nature* **409**, 529

Klebsiella - General Characteristics

- Gram negative, non-motile, straight rods
- Singly, in pairs or short chains
- Capsule forming
- Both respiratory and fermentative metabolism (facultative)
- Oxidase negative
- Nosocomial and UTI

Picture source: http://healthcare.bioquell.com

Classification Proteobacteria Gammaproteobacteria Enterobacteriales Enterobacteriaceae Klebsiella

Source: Bergey's Manual of Systematic Bacteriology

A Superbug Outbreak at NIH - 2013 Hunting the Nightmare Bacteria

One particularly dangerous bug, Klebsiella pneumoniae carbapenemase, or KPC, has been found in American hospitals in 44 states so far. That's likely an underestimate, since there is no national reporting system to track outbreaks of drug-resistant bacteria

stalked N.

Iling six

of a Multiresistant R. Dapenem Resistant

of a Multiresistant R. Dapenem Resistant

in an Intensive Carr Carbapenem Resistant

What I ospital Outbreak of Carbapenem Resistant

Outbreak of Carbapenem Resistant

What I ospital Outbreak of Carbapenem Resistant 'Superbug' stalked NIH hospital last Websiella Pneumoniae With Whole-Genome Sequencing Infection with a Multiresistant 2005 pneumoniae Strain racking a Hospital Outbreak of Carbapeumoniae of Klebsiella pneumoniae ontaining an NDM-1 or Neusiella prieumoniae contaminy an imprivir la plasmid affected 29 patients. This hospital outbreak extended-spectrum β-lactamase (ESBL)-positive K.

The Outbreak Known No known Other potential opportunity for patient overlap transmission direct path(s) transmisson

Klebsiella pneumoniae Antimicrobial Drug Resistance, United States, 1998–2010

Klebsiella pneumoniae antimicrobial drug resistance, United States, 1998–2010

Prevalence of antimicrobial cross-resistance among imipenem-resistant Klebsiella pneumoniae isolates, United States, 2010

Source: Centers for Disease Control and Prevention

Colistin heteroresistance in K. pneumoniae

David Weiss - Genetically identical, but phenotypically distinct, subpopulation of colistin-resistant bacteria can mediate in vivo treatment failure

Heteroresistant subpopulation

Schematic representation of mechanism leading to heteroresistance

Source: Poirel at al. 2015. Heteroresistance to colistin in *Klebsiella pneumoniae* associated with alteration sin the PHOPQ regulatory syste. Antimicrob Agents Chemother 59:2780-2784

Library Preparation

Source: Illumina, An Introduction to Next-Generation Sequencing Technology, 2017

Sequencing: Paired-end

Source: Illumina, An Introduction to Next-Generation Sequencing Technology, 2017

Sequencing: Output File

Sequence Sequence Output to Data File CATTCGACGGATCG **AACTGAGTCCGATA AACTGATCGGATCC** CATTCGTGGCAGTC **AACTGAACCTGATG AACTGAGATTACAA** CATTCGCAGTTCATT CATTCGAACTTCGA

Source: Illumina, An Introduction to Next-Generation Sequencing Technology, 2017

General workflow

Import Raw Data

SRA file

FASTQ Conversion

Split FASTQ

QC

Force Trimming

Quality Trimming

Adapter Trimming

Reference based assembly

Map Reads

Alignment

Consensus

FASTA

De novo

De Bruijn Graphs

Overlap Consensus Graph

Final QC QUAST

QC—FastQC

Forced Trimming

Beginning: 15-20bp

End: 5bp

Quality Trimming

Quality Trimming
Quality score < 20
trimmed

Adapter Trimming

Illumina Nextera Adapters

Nextera Transposase Adapters

(Used for Nextera tagmentation)

Read 1

5' TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG

Read 2

5' GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG

Source: Protocol, Illumina Adapter Sequences

Adapters can ruin the Assembly

They look like very high corepeats

Source: De novo Assembly, Bioinformatics DotCa

Burrows–Wheeler transformation (BWT)

- BWT is used in mapping short reads to a reference.
- Intuition of how BWT reduces running(mapping) time.
- Tools implementing BWT: BWA, Bowtie.
- Topics we are going to talk about today:
 - How does it work? (A step-wise tutorial)
 - Brief introduction of annotation for matched position on the reference of patterns (suffix array) and inexact matching (error counting array).

Steps:

- (a) Sort all rotations of the text intolexicographic order (\$ always as the first row). Only keep the first and last column.
- (b) Invert the BWT matrix (BWM).
- (c) Map patterns to the data structure

Intuitions:

The first and last column include order information while "\$" marks the end of the original sequence.


```
F L

$ a_0

a_0 b_0

a_1 b_1 \longleftarrow Which BWM row begins with b_1?

a_2 a_1 Skip row starting with $ (1 row)

Skip rows starting with a_0 (4 rows)

Skip row starting with a_0 (1 row)

Answer: row 6

row 6 \rightarrow a_1 a_2 Answer: row 6
```


Recall: searching for ana in panamabananas			Recall: searching for ana in panamabananas		
Now we extend all strings with at most 1 mismatch.	_	Mismatches 1 0 1 0 0 0 0	One string produces a second mismatch (the \$), so we discard it.	_	1 1 0 0
	s, \$panamabanana,			s, Spanamabanana,	

Brief introduction of annotation for matched position matched patterns (suffix array) and inexact matching (error counting array)

Suffix array (SA) can be precalculated and is used to annotate the matched position found on the reference.

So far all we talked about was exacting matching. However, BWT can be modified to work for inexact matching. The basic idea is to carry an array for counting the number of unmatched bp. (example of "panamabanana")

If interested, see the video:

https://www.youtube.com/watch?v=Vjnm-jF1PBQ

https://www.youtube.com/watch ?v=kvVGj5V65io

https://www.youtube.com/watch?v=Vjnm-jF1PBQ

Genome assembly alternatives

- b. Traditional Sanger sequencing algorithms (reads represent as nodes, edges represent alignments between reads)
- c. Overlapping k-mers
- d. Building de Bruijn graph (k-mer prefixes and suffixes are nodes, edges represent k-mers having a particular prefix and suffix)

Genome assembly, reference-based approach

Known reference genome

Problems:

- Large scale differences:
 - o Insertions,
 - Deletions
 - Rearrangements
- Repeats
- Reference bias

Possible solution: combination of mapping and de novo assembly

General workflow of genome assembly

Measures of assembly quality

- Number of contigs/scaffolds
 - Fewer is better, one is ideal
- Contig sizes
 - Maximum
 - Average
 - Median
 - **N50**
- Total size
 - Should be close to expected genome size
 - Repeats may only be counted once
- Number of "N"s
 - N is the ambiguous base, fewer is better
- Genes, that must present in this genome (BUSCO)

The N50 of a set of contigs is the size of the largest contig for which half the total size is contained in that contigs and those larger

- The weighted median contig size
- Example:
 - 7 contigs totalling 20 units: 7, 4, 3, 2, 2,1, 1
 - N50 is 4, as 7+4=11, which is > 50% of 20

Citation

Perna, Nicole T., Guy Plunkett III, Valerie Burland, Bob Mau, Jeremy D. Glasner, Debra J. Rose, George F. Mayhew et al. "Genome sequence of enterohaemorrhagic Escherichia coli O157: H7." Nature 409, no. 6819 (2001): 529.

Bergey, David Hendricks, Robert Stanley Breed, Everitt George Dunne Murray, and A. Parker Hitchens. Bergey's manual of determinative bacteriology. Baltimore: Williams & Wilkins, 1934. Harvard

Sanchez, Guillermo V., Ronald N. Master, Richard B. Clark, Madiha Fyyaz, Padmaraj Duvvuri, Gupta Ekta, and Jose Bordon. "Klebsiella pneumoniae antimicrobial drug resistance, United States, 1998–2010." Emerging infectious diseases 19, no. 1 (2013): 133.

Sanchez, Guillermo V., Ronald N. Master, Richard B. Clark, Madiha Fyyaz, Padmaraj Duvvuri, Gupta Ekta, and Jose Bordon. "Klebsiella pneumoniae antimicrobial drug resistance, United States, 1998–2010." Emerging infectious diseases 19, no. 1 (2013): 133.

Jayol, Aurélie, Patrice Nordmann, Adrian Brink, and Laurent Poirel. "Heteroresistance to colistin in Klebsiella pneumoniae associated with alterations in the PhoPQ regulatory system." Antimicrobial agents and chemotherapy 59, no. 5 (2015): 2780-2784.

Compeau, Phillip EC, Pavel A. Pevzner, and Glenn Tesler. "How to apply de Bruijn graphs to genome assembly." Nature biotechnology 29, no. 11 (2011): 987.

Dr Torsten Seemann, IMB - Winter School 2011

Simão, Felipe A., Robert M. Waterhouse, Panagiotis Ioannidis, Evgenia V. Kriventseva, and Evgeny M. Zdobnov. "BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs." Bioinformatics 31, no. 19 (2015): 3210-3212.

https://www.illumina.com/science/technology/next-generation-sequencing.html

https://www.youtube.com/watch?time_continue=733&v=4n7NPk5lwbl

www.langmead-lab.org/teaching-materials

https://www.youtube.com/watch?v=Vjnm-jF1PBQ

Thank you for your attention!

Overlap-layout-consensus approach

The key idea is to avoid linear searching.

Say T has 300 $\bf A$ s, 400 $\bf C$ s, 250 $\bf G$ s and 700 $\bf T$ s and $\bf S$ < $\bf A$ < $\bf C$ < $\bf G$ < $\bf T$

Which BWM row (0-based) begins with G_{100} ? (Ranks are B-ranks.)

Skip row starting with \$ (1 row)

Skip rows starting with **A** (300 rows)

Skip rows starting with **C** (400 rows)

Skip first 100 rows starting with **G** (100 rows)

Answer: row 1 + 300 + 400 + 100 = row 801

How does it reduce running (mapping) time?

The key idea is to avoid linear searching.

Say *T* has 300 **A**s, 400 **C**s, 250 **G**s and 700 **T**s and \$ < **A** < **C** < **G** < **T**Which BWM row (0-based) begins with **G**₁₀₀? (Ranks are B-ranks.)

Skip row starting with \$ (1 row)

Skip rows starting with **A** (300 rows)

Skip rows starting with **C** (400 rows)

Skip first 100 rows starting with **G** (100 rows)

Answer: row 1 + 300 + 400 + 100 = **row 801**

Overlap graph Edge label is overlap length

ATATTGC

Shortest common superstring (visit every node once, minimize cost) = Traveling Salesman Problem - NP-hard Hamiltonian Cycle (visit every node once) - NP-compete

ACGGCGC

ATTGCGC

CGCGTAC

CGCCGCT

GCGTACG

GCCGCTA

GTACGGC

Greedy algorithms can help (but no guarantee of optimal solution)

TATATTG

Foundations of Computational Systems Biology, David K. Gifford

ATTATAT

GCATTAT

Genome assembly, De Bruijn graphs

Hierholzer's algorithm:

- Choose any starting vertex v, follow a trail of edges from that vertex until returning to v (the tour may not cover all the vertices and edges of the initial graph).
- As long as there exists a vertex *u* that belongs to the current tour but that has adjacent edges not part of the tour, start another trail from *u*, following unused edges until returning to *u*, and join the tour formed in this way to the previous tour.

Complexity of the algorithm: O(|E|)

Superstring: 0000110010111101

De Bruijn graph from reads with sequencing errors

NP-hardness

https://en.wikipedia.org/wiki/NP_(complexity)

Reference-guided de novo assembly approach

BMC Bioinformatic 2017, Heidi EL Lischer, Kentaro K Shimizu

Gap filling

Genome Biology 2012, Marten Boetzer, Walter Pirovano

General workflow

```
Get data
QC
      FastQC
      Trimming with Trimmomatic (Read to the manual)
            Library bias (forced trimming) choose 15-20bp
            Quality trimming
                                     get rid of the data with Quality score lower than 20
            Adapter trimming
Assembly
      De novo
            Overlap consensus Graph
            De Bruijn graphs
                  SPades
                  Skesa
      Reference
            Map Reads
                               BWA The output is an alignment file
            Alignment File
                               SamTools Process the file and output is a consensus file
            Consensus File
                               SamTools Process to get a FASTA file using Sam tools and SegTk
            FASTA File
                               SeqTK
QC
      QUAST
      BUSCO
```