

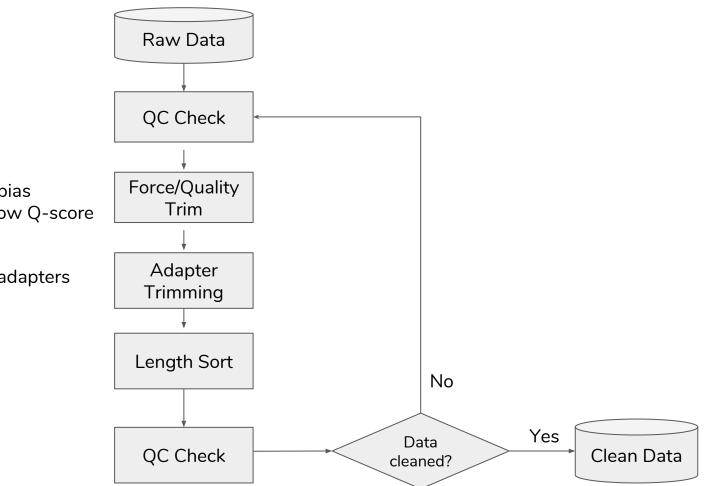
Genome Assembly Preliminary Results

Team 1: Vasanta, Qinwei, Tianze, Seonggeon, Kunal, Siarhei, Victoria, Nirav, Hunter

Presented by Nirav Shah, Hunter Seabolt, and SRR5666627

Presentation Outline

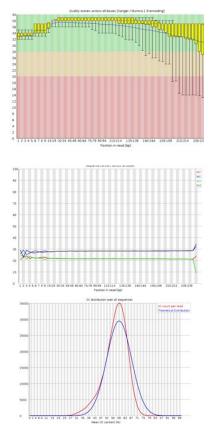
- Trim/QC
- Workflow
- Examples
- Comparison and selection of trimming software
- Clean Data
- Assembly and Preliminary Results
- Workflow
- Biological Considerations
- Reference Based genome assembly
- de novo genome assembly
- Comparison of de novo assemblers
- Post-processing
- QC
- Visualization


Data and Background

- Problem:
 - Antibiotic resistance in Klebsiella
- Data:
 - 260 isolates of Klebsiella spp.
 - 2 x 250 Illumina short reads (MiSeq platform)
- Background:
 - Generic biological characteristics
 - 1 chromosome, likely some plasmids
 - Genome size: ~ 5.3-5.5 Mbp
 - GC content: ~57.1 % GC
- Objective:

Generate a pipeline to assemble and QC short read data, with respect to biological characteristics and downstream analyses.

https://sciencesource.com/Doc/SCS/Media/TR7/f/3/6/f/SS2294165 .jpg?d63641835809

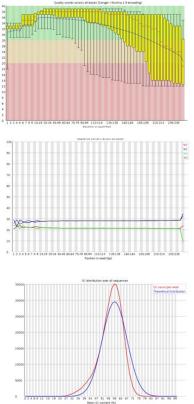


- Remove sequencing bias
- Remove bases with low Q-score
- Remove sequencing adapters

- Filter out short reads

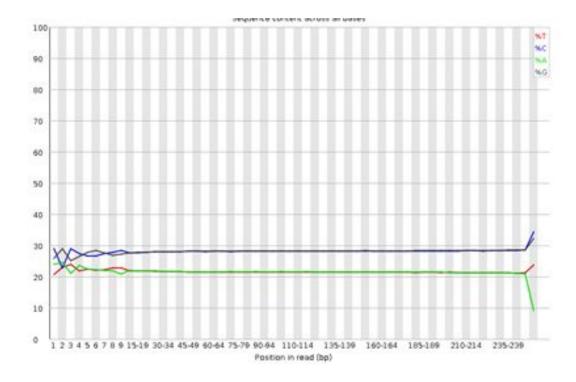
Raw, unloved sequence data

Forward Reads



Avg. Phred Score

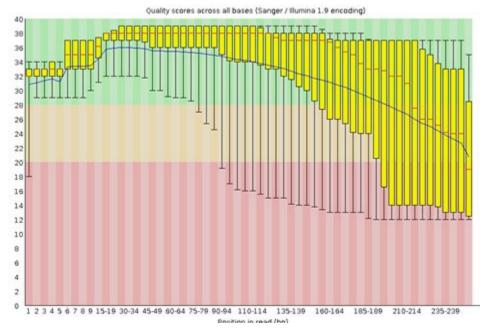
Avg Nucleotide %


GC content

Reverse Reads

Andrews S. (2010). FastQC: a quality control tool for high throughput sequence data. Available online at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc

Trimming



Sequencing Bias

- Introduced during library preparation
- Non-random favoring of primer sequences during amplification
- To be removed or not?

Per Base Sequence Content

Trimming Tools

Quality scores:

- Phred Q-score = $-10\log_{10}P$
- * At 1x depth coverage:

Q-score	Incorrect Base Call (Probability)
10	1 in 10 (90%)
20	1 in 100 (99%)
30	1 in 1000 (99.9%)
40	1 in 10,000 (99.99%)

Trimming Software:

BBDuk

Trimmomatic

SolexaQA++

Sickle

Seqtk

TrimGalore

Trimming Software

BBDuk

Trimmomatic

SolexaQA++

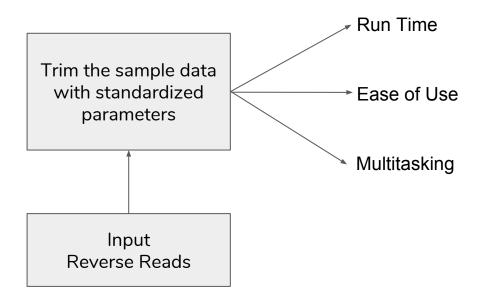
Sickle

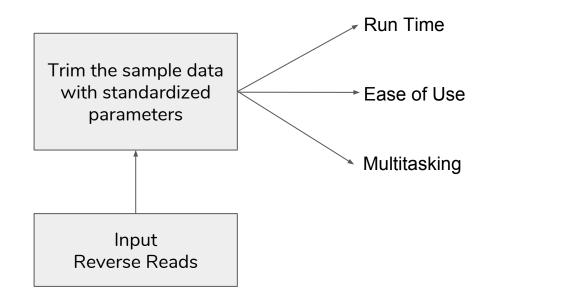
Seqtk

TrimGalore

What to look for?

Average Phred Score


Per Base Sequence Content


Adapter Content

Sequence Length Distribution

Trim the sample data with standardized parameters

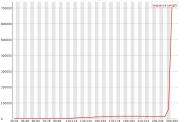
Trim the sample data with standardized parameters

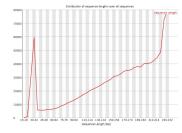
Tools for Trimming: BBDuk Trimmomatic SolexaQA++ Sickle Seqtk TrimGalore

Parameter:

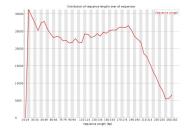
• Quality Trimming - Q20

Software	Run time (in seconds)	Output File (MB)	Multitask capacity
SolexaQA++	80.24	393.6	no
Sickle	5.19	508.3	no
TrimGalore	17.77	486.4	no
BBDuk	3.17	428.7	yes
Trimmomatic	3.09	383.9*	yes
Seqtk	3.41	433.5	yes

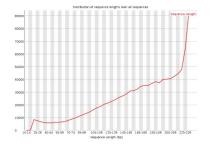

Raw Reads

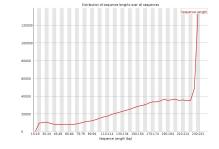

700000	Sequence Lengt?
600000	
500000	
400000	
300000	
200000	
100000	
0 30-34 45-49 60-64 75-79 90-94 110-114 13	0-134 150-154 170-174 190-194 210-214 230-234 250-25

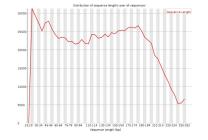
consumer or sequence enquire over an sequences


Software	Run time (in seconds)	Output File (MB)	Multitask capacity
SolexaQA++	80.24	393.6	no
Sickle	5.19	508.3	no
TrimGalore	17.77	486.4	no
BBDuk	3.17	428.7	yes
Trimmomatic	3.09	383.9*	yes
Seqtk	3.41	433.5	yes

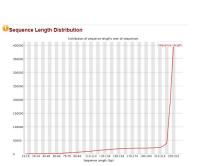
Raw Reads							
Software	Run time (in seconds)	Output File (MB)	Multitask capacity				
SolexaQA++	80.24	393.6	no				
Sickle	5.19	508.3	no				
TrimGalore	17.77	486.4	no				
BBDuk	3.17	428.7	yes				
Trimmomatic	3.09	383.9*	yes				
Seqtk	3.41	433.5	yes				

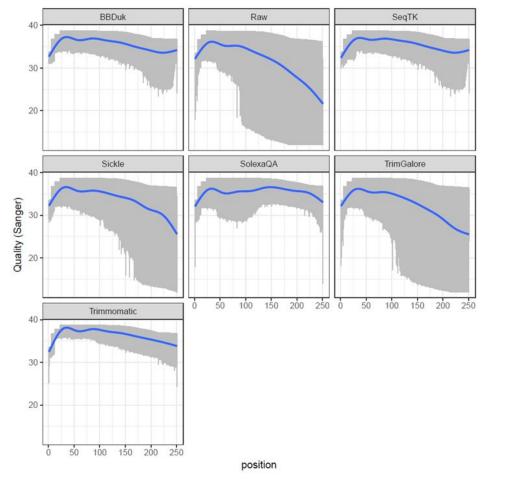


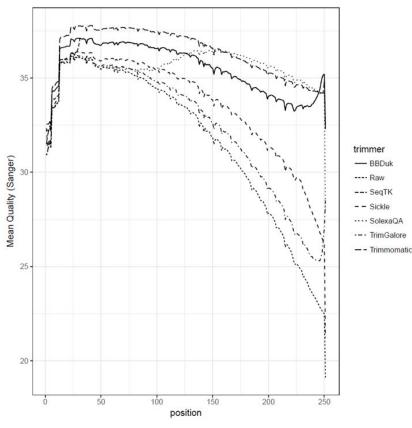


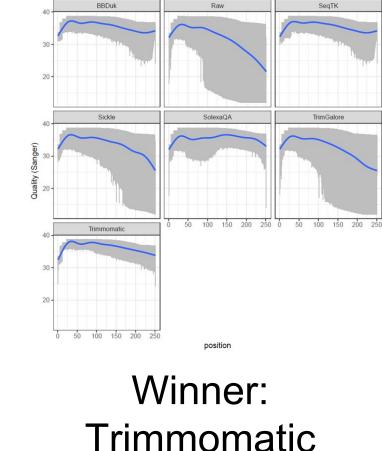


Which tool	performs	the	best?
------------	----------	-----	-------

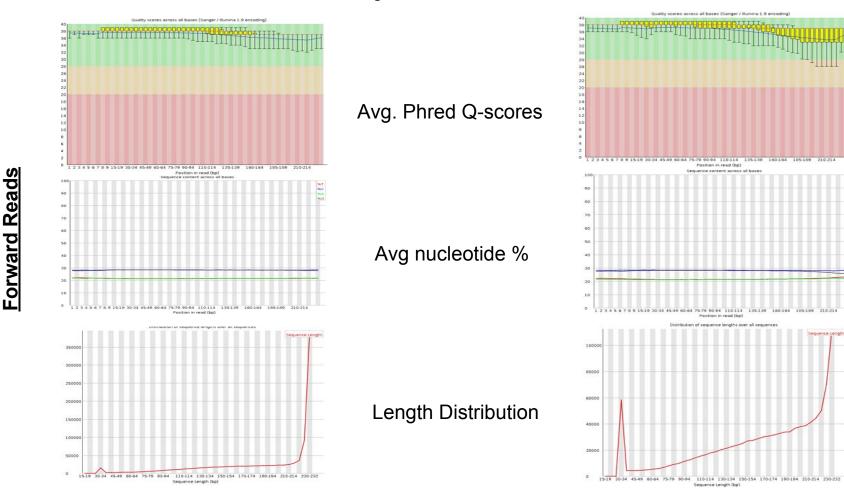

Software	Run time (s)	Output File (MB)	Multitask capacity
SolexaQA++	80.24	393.6	no
Sickle	5.19	508.3	no
TrimGalore	17.77	589.9	yes
BBDuk	3.17	428.7	yes
Trimmomatic	3.09	383.9*	yes
Seqtk	3.41	433.5	yes


Trimmomatic

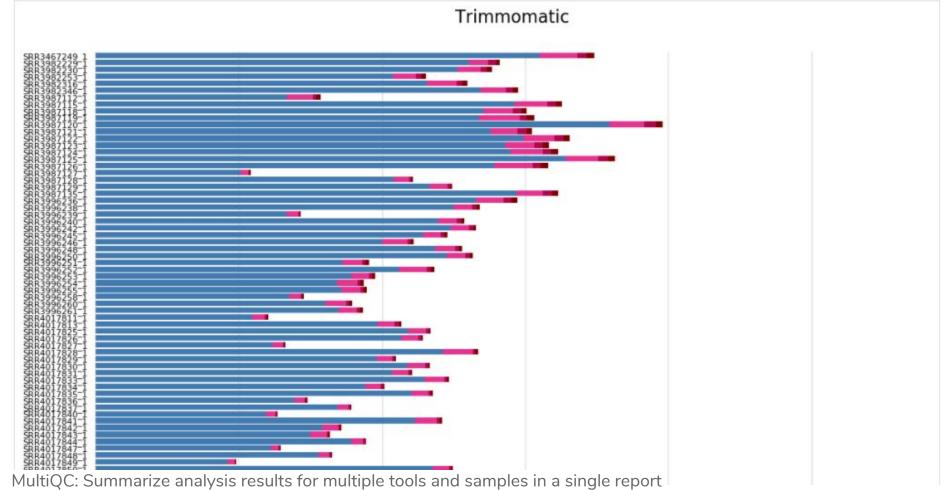



TrimGalore

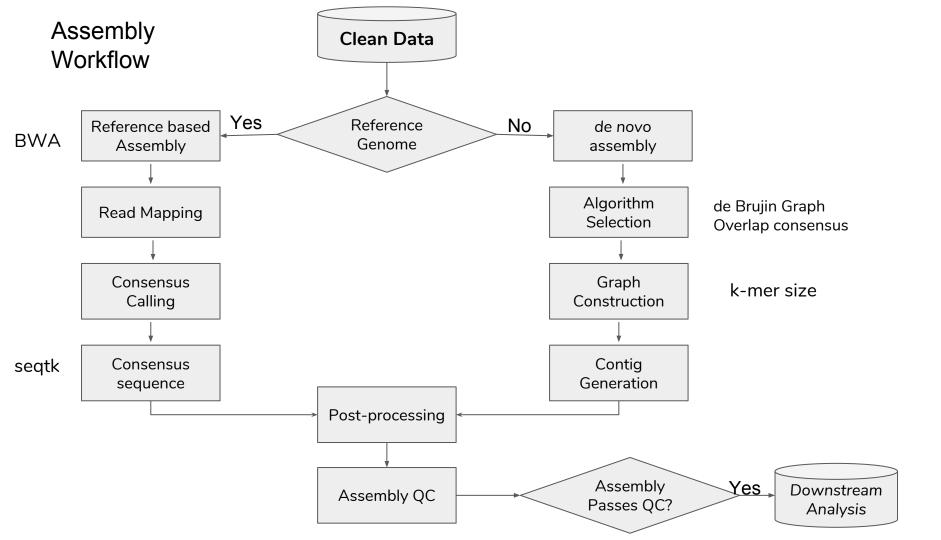
Graphs generated using QRQC(R) Vince Buffalo (2012). qrqc: Quick Read Quality Control. R package version 1.32.0. http://github.com/vsbuffalo/qrqc

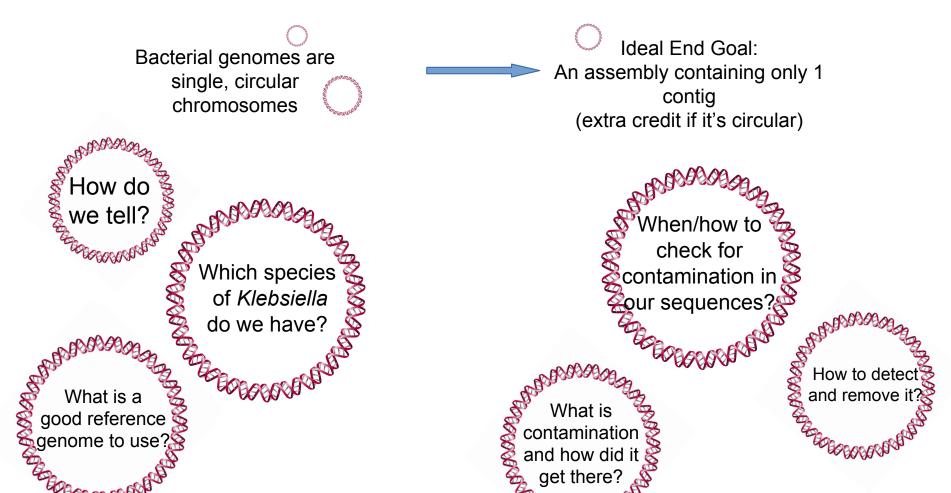


Software	Run time (in seconds)	Output File (MB)	Multitask capacity
SolexaQA++	80.24	393.6	no
Sickle	5.19	508.3	no
TrimGalore	17.77	589.9	yes
BBDuk	3.17	428.7	yes
Trimmomatic	3.09	383.9*	yes 🧹
Seqtk	3.41	433.5	yes



* Trimmomatic uses a sliding window trimming algorithm – was set to 1 here in order to be most comparable.


Clean Data, courtesy of Trimmomatic


Reverse Reads

Philip Ewels, Måns Magnusson, Sverker Lundin and Max Käller Bioinformatics (2016)

Biological Considerations

Reference Based Assembly

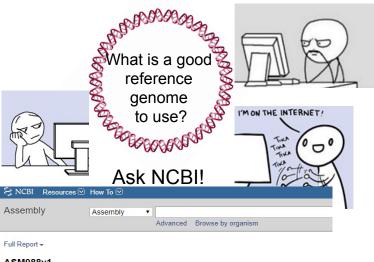
Mashtree

Blast

De novo assemble, then Blast, then re-assemble with reference

Who cares? Just do de novo assembly

Ref-based Assembly pipeline


Which species

of Klebsiella 🕺

do we have?

"BOBOBOBO

BODOOD BOD

ASM988v1

 Organism name:
 Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044 (enterobacteria)

 Infraspecific name:
 Strain: NTUH-K2044

 BioSample:
 SAMD00060934

 Submitter:
 National Health Research Institutes

Assembly level: Complete Genome Genome representation: full

GenBank assembly accession: GCA_000009885.1 (latest) RefSeq assembly accession: GCF_000009885.1 (latest) RefSeq assembly and GenBank assembly identical: yes

IDs: 31388 [UID] 10688 [GenBank] 31388 [RefSeq]

History (Show revision history)

Comment


This sequence was determined by the K. pneumoniae Genome Project at the Yang-Ming University VYM G study were from NRPGM of R.O.C.

Global statistics

Total sequence length	5,472,672
Total assembly gap length	0
Total number of chromosomes and plasmids	2

De novo assembly: Kmer selection

- De Bruijn graph-based assemblers split reads into kmers for graph construction.
- Assembly outcome is heavily influenced by the choice of kmer values.
 - Problematic palindromes
 - Sweet spot between sensitivity and specificity
- Where is this magical sweet spot?
 - Short answer: it's different for every sample you assemble due to quality of seq data, genome complexity, etc. Garbage in, garbage out.

Good kme choice: fewer contigs, higher N5(Bad kme choice: shorter otal length, more contigs, lower N50 BARARA

Preliminary results: comparison of assemblies

Using k=41, determined by kmergenie

-	-	-					
Assembler	Run Time (s)	Kmer	# contigs	N50 (kbp)	Total length (Mbp)	GC %	# N's
Spades	403	41	82	200.1	5.74	56.97	370
Skesa	87	41	111	120.4	5.67	56.98	0
IDBA-UD	56	41	192	66.5	5.75	56.98	0
Tadpole	13.3	41	343	56.0	5.70	56.96	0
IDBA-Hybrid	81	41	190	62.5	5.63	56.98	0
Ref-based (Samtools)	395		2	5,248.5	5.47	58.08	521,755

Caveats to comparison:

 all assemblers compared here support multi-threading. This parameter left as default.

 Only Spades and Tadpole allow for add'n single end read input (not used here)

– Skesa does not include a built-in scaffolder.

Which assembly is best?

Overall, Spades and Skesa are pretty comparable with this kmer value.

Preliminary results: comparison of assemblies

Using k=99, determined by us using Spades

-		-					
Assembler	Run Time (s)	Kmer	# contigs	N50 (kbp)	Total length (Mbp)	GC %	# N's
Spades	421	99	68	275.9	5.745	56.96	170
Skesa	89.5	99	195	60.7	5.668	56.96	0
IDBA-UD	50.8	99	121	119.7	5.748	56.96	0
Tadpole	15.3	99	244	44.5	5.745	56.97	0
IDBA-Hybrid	82.8	99	161	83.5	5.751	56.96	0
Ref-based (Samtools)	395		2	5,248.5	5.47	58.08	521,755

Caveats to comparison:

 all assemblers compared here support multi-threading. This parameter left as default.

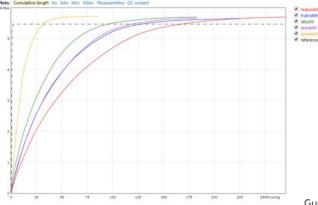
 Only Spades and Tadpole allow for add'n single end read input (not used here)

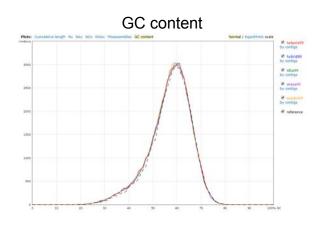
– Skesa does not include a built-in scaffolder.

Which assembly is best?

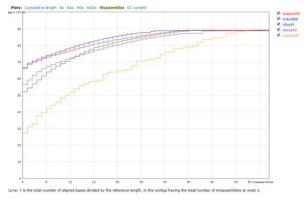
Spades (k=99) has lowest # contigs, highest N50 of all de novo assemblies attempted.

Drawback: also takes the longest to run, has some N's


Preliminary results: Draft QC (Quast)

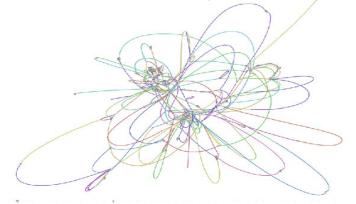

For draft assemblies where k=99

Genome statistics heatmap (m=500)

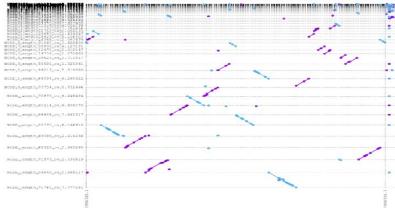

Genome statistics	tadpole99	hybrid99	idba99	skesa99	spades99
Genome fraction (%)	88.971	88.82	88.823	88.699	89.301
Duplication ratio	1.004	1.001	1.002	1.001	1.003
Largest alignment	97787	172 993	218 046	115 609	293 196
Total aligned length	4879022	4862260	4864172	4856472	4894465
NGA50	34754	45738	61658	44 045	101 399
LGA50	49	34	28	38	15
Misassemblies					
# misassemblies	38	29	36	43	51
Misassembled contigs length	1 468 194	1 324 238	2 292 894	2 1 19 3 3 5	3 799 323
Mismatches					
# mismatches per 100 kbp	652.46	650.16	629.83	651.1	647.1
# indels per 100 kbp	11.6	10.72	10.84	11.93	12.48
# N's per 100 kbp	0	0	0	0	2.91
Statistics without reference					
# contigs	270	225	183	183	86
Largest contig	140 979	172 993	265 440	155 498	471 761
Total length	5 697 803	5651712	5698915	5665016	5729945
Total length (>= 1000 bp)	5679755	5626540	5 683 766	5 6 5 7 3 6 9	5717665
Total length (>= 10000 bp)	5 2 3 2 0 6 4	5 306 730	5 400 185	5 384 767	5604812
Total length (>= 50000 bp)	2 553 392	3 473 859	4233885	3 4 9 4 9 6 4	5 309 579

Cumulative length of draft assemblies

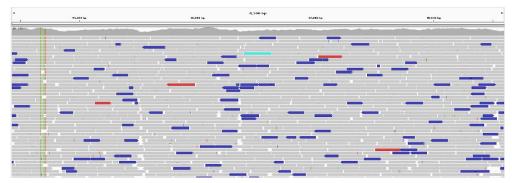
Misassemblies compared to reference

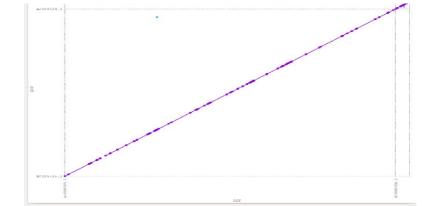


Indications of contamination

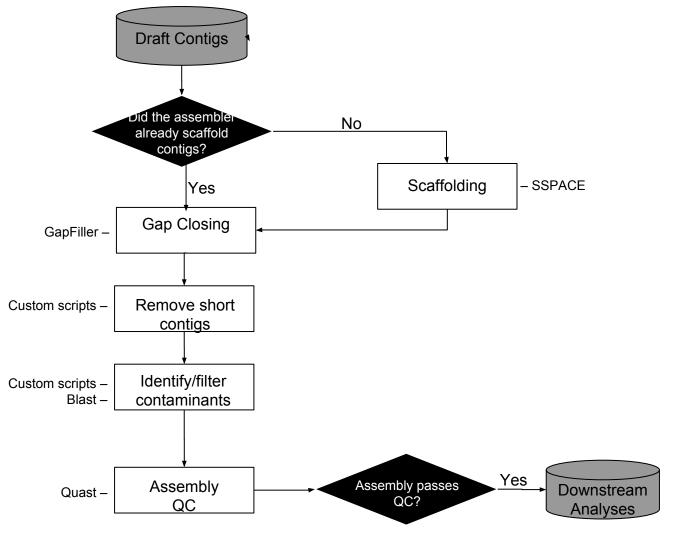

- . GC content
- Many misassemblies compared to reference genome*
- . Depth coverage anomalies
- . Highly fragmented assemblies

Gurevich et al. QUAST: quality assessment tool for genome assemblies, Bioinformatics (2013) 29(8): 1072-1075.


Preliminary results: Visualization


Visualize the de Bruijn graph with Bandage

- Check for circular (ie. closed) chromosome



Visually inspect alignment quality with IGV

Identify indels, duplications, reversals, etc. using Mummer

Post-Assembly Finishing

Questions?

Additional References

- Bankevich A. et al. SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing. Journal of Computational Biology, 2012
- Peng, Y., et al. (2012) IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth, Bioinformatics, 28, 1420-1428.
- Cox, M.P., D.A. Peterson, and P.J. Biggs. 2010. SolexaQA: At-a-glance quality assessment of Illumina second-generation sequencing data. BMC Bioinformatics11:485
- Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: A flexible trimmer for Illumina Sequence Data. Bioinformatics, btu170.
- https://github.com/lh3/seqtk
- https://github.com/FelixKrueger/TrimGalore
- Li H, et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009 Aug 15;25(16):2078-9
- Chikhi R., Medvedev P. Informed and Automated k-Mer Size Selection for Genome Assembly, HiTSeq 2013
- Kurtz S, et al. Versatile and open software for comparing large genomes. Genome Biology (2004), 5:R12.
- James T. Robinson, Helga Thorvaldsdóttir, Wendy Winckler, Mitchell Guttman, Eric S. Lander, Gad Getz, Jill P. Mesirov. Integrative Genomics Viewer. Nature Biotechnology 29, 24–26 (2011)
- Wick R.R., Schultz M.B., Zobel J. & Holt K.E. (2015). Bandage: interactive visualisation of de novogenome assemblies. Bioinformatics, 31(20), 3350-3352.
- https://jgi.doe.gov/data-and-tools/bbtools/
- Joshi NA, Fass JN. (2011). Sickle: A sliding-window, adaptive, quality-based trimming tool for FastQ files (Version 1.33) [Software].

Special Thanks:

- Dr. David Weiss (Emory)
- Richa Agarwala (NCBI)
- Team 1 Genome Assembly Group

Look for a homework announcement shortly!