
Source Code Management
Aroon Chande

Lecture 3

Tuesday, January 16, 2018

1January 16, 2018 Lecture 3 – Source Code Management

Outline

• Source code management and version control

• Introduction to git

• Class Github

January 16, 2018 Lecture 3 – Source Code Management 2

Outline

• Source code management and version control

• Introduction to git

• Class Github

January 16, 2018 Lecture 3 – Source Code Management 3

The problem…

Many people, working on many files in a codebase, at
the same time, collaboratively

January 16, 2018 Lecture 3 – Source Code Management 4

A codebase is not just code
• A “codebase” is all the files that go into a project

• In a normal project this includes:
• Code (Perl, Python, and R scripts for example)
• Documentation
• Build configuration and tools
• Examples for new users
• Test cases to ensure your code does what it is supposed to do after each edit

• For you it will also include results

January 16, 2018 Lecture 3 – Source Code Management 5

Does this sound familiar?

1. You are writing a script for a homework assignment and just need
to add a few more things to finish

2. You make what seems like a small edit, but it breaks your script

3. You manually undo your changes…

4. …But it is still broken!?

January 16, 2018 Lecture 3 – Source Code Management 6

This semester’s problem

• Each group will generate a codebase but:

• How do you keep track of it?

• What is the latest and greatest version?

• What if you accidentally delete all your work?

• How do you share your codebase?

January 16, 2018 Lecture 3 – Source Code Management 7

Potential solutions

• How do you keep track of it and what’s the latest and greatest
version?

• Just edit one big script that everyone works on?

• Copy and paste code snippets into a big notebook?

• Put it on Dropbox?

• The version that’s been copy and pasted and renamed with the newest date?

• The one your groupmate emailed you at 4AM the day of your presentation?

January 16, 2018 Lecture 3 – Source Code Management 8

You’re on the right track

Potential solutions

• What if you accidentally delete all your work?
• Go through the 5 stages of grief, eat a pizza all by yourself, and don’t tell

anyone?

• Frantically email everyone trying to find another copy?

• How do you share your work?
• Email?
• Dropbox?

January 16, 2018 Lecture 3 – Source Code Management 9

Version control to the rescue

• Use source code management tools, like git, for version control
and file management

January 16, 2018 Lecture 3 – Source Code Management 10

Version control

• A source code management (SCM) tool:

• Keep multiple version of everything in your codebase, all in one place

• Requires a comment or description be given for every change made before
you update the master copy

• Can show you the differences between versions of a file

• Allows everyone to edit anything, at the same time

January 16, 2018 Lecture 3 – Source Code Management 11

History of version control systems

• 1972 – Source Code Control System (SCCS)
• Human readable history files
• File integrity checking
• Delta files, or only the changed lines, for updates – saved lots of space!
• Could only track text files, no binaries
• Operations get slower for every new file or change being added

• 1982 – Revision Control System (RCS)
• Based on the ideas from SCCS, scaled a little better

• Both systems could only edit one file at a time and were local only

January 16, 2018 Lecture 3 – Source Code Management 12

History of version control systems

• 1986 – Concurrent Versions System (CVS)
• Client-server model of data distribution, first popular (and F/OSS) SCM that

supported networking
• Multi-file editing per version with the concept of branching
• Support for binary files
• Multi-user, but not concurrently

• 2000 – Subversion (SVN)
• Client-server model with diffs instead of files being transferred
• Atomic operations(!)
• Per file / folder versioning and binary support

January 16, 2018 Lecture 3 – Source Code Management 13

History of version control systems

• 2005 – Mercurial (hg)
• One of the first, widely used distributed version control systems
• Designed to be highly scalable and performant
• Multi-file, multi-user concurrent editing with branching

• 2005 – Git
• Created for use by the Linux kernel developers
• The other widely used distributed version control system
• Built for flexibility and scalability

January 16, 2018 Lecture 3 – Source Code Management 14

Management styles

Everybody edits, where each collaborator can make changes directly to
the shared master

January 16, 2018 Lecture 3 – Source Code Management 15

Management styles

Managed integration, where the integration manager reviews and
merges changes into the master repository

January 16, 2018 Lecture 3 – Source Code Management 16

Management styles

Corporate model, feature-specific groups with managers, and a leader
in charge of final integration into the master repository

January 16, 2018 Lecture 3 – Source Code Management 17

Outline

• Source code management and version control

• Introduction to git

• Class Github

January 16, 2018 Lecture 3 – Source Code Management 18

Introduction to git

• Git is a free and open source SCM tool (https://git-scm.com/)

• It was originally developed by Linus Torvalds, the creator of the Linux
kernel, to manage the kernel codebase

• Git is opinionated

• The Linux kernel is a massive codebase
>20 million lines of code
~37,000 files
1000’s of contributors
The word “crap” appears surprisingly few times, only 191 times

January 16, 2018 Lecture 3 – Source Code Management 19

https://www.linuxcounter.net/statistics/kernel

https://git-scm.com/

Introduction to git

• A project in git is called repository, or a ‘”repo”

• Files are added, or “checked in”, to a repo by committing your local
changes to a shared master version

• A repo is copied by cloning or forking

• There can be multiple versions of a repo, all with different changes,
called branches

January 16, 2018 Lecture 3 – Source Code Management 20

Introduction to git

• The integrity of the files in your repo is guaranteed
• You will get exactly the same file out of git as you put into git

• Git is a distributed version control system
• You make changes to a local copy and share your changes
• An internet connection is not required to work

January 16, 2018 Lecture 3 – Source Code Management 21

Introduction to git

• When you clone a repo, you download the current version and
history of every file from the server

• Changes you make get sent back to the same server/repo

• When you fork a repo, you download the current version and history
of every file from the server and claim ownership of the repo

• Changes you make get sent to a different master copy on the server
• Your copy no longer has the same changes as the original repo you forked

January 16, 2018 Lecture 3 – Source Code Management 22

Introduction to git

• Git repos are sometimes viewed as trees

• There’s a master branch that is like the trunk of the tree, the source
of each subsequent branch

• Branches can be split from the master branch or other branches

• We use branches for working on and staging fixes and new features

January 16, 2018 Lecture 3 – Source Code Management 23

Introduction to git

January 16, 2018 Lecture 3 – Source Code Management 24

https://www.atlassian.com/git/tutorials

Introduction to git

• The work done on two branches can be merged together

• This process saves the history of each branch, then tries to combine
changes

• Changes to the same file in both branches may result in conflicts

January 16, 2018 Lecture 3 – Source Code Management 25

Introduction to git

January 16, 2018 Lecture 3 – Source Code Management 26

https://www.atlassian.com/git/tutorials/merging-vs-rebasing

Introduction to git

• Git follows the Work-Stage-Commit lifestyle

• Work on files in a repo you’ve cloned or forked

• Stage your work and describe work to be added (git add)

• Commit your changes to the repo, saving a snapshot in time (git commit)

January 16, 2018 Lecture 3 – Source Code Management 27

Introduction to git

• You push your local changes (commits) to the server
• This allows other contributors to view your work

• You can pull other users’ changes from the server copy into your local
copy

• This is like merging two branches but instead merges forward and backward
in history

January 16, 2018 Lecture 3 – Source Code Management 28

Introduction to git

• A special case of pulling, git fetch

• git fetch downloads and informs you of any changes but does
not apply any changes, if present

• Fetch lets you answer the question, “Has anything changed on the
server?”, without fear

January 16, 2018 Lecture 3 – Source Code Management 29

Introduction to git

A simple git repository

January 16, 2018 Lecture 3 – Source Code Management 30

Introduction to git

A simple git repository

January 16, 2018 Lecture 3 – Source Code Management 31

Introduction to git

• A >400 user science git repo

January 16, 2018 Lecture 3 – Source Code Management 32

Introduction to git

• You will be using git from the command line and the Github
enterprise web UI (github.gatech.edu) for this class

• You can edit files from the website
• But save this mostly for text files (READMEs)
• Editing scripts might break things

January 16, 2018 Lecture 3 – Source Code Management 33

Introduction to git

• Making a new git repo using git init

January 16, 2018 Lecture 3 – Source Code Management 34

Introduction to git

• Stage the R scripts and commit them

January 16, 2018 Lecture 3 – Source Code Management 35

Introduction to git

• Realize you forgot to add the completion message to one of the
scripts

January 16, 2018 Lecture 3 – Source Code Management 36

Introduction to git

• Push the local changes to our master version on Github

January 16, 2018 Lecture 3 – Source Code Management 37

Introduction to git

• Pull changes made by others into the master branch

January 16, 2018 Lecture 3 – Source Code Management 38

Introduction to git

• Pull new braches off of master

January 16, 2018 Lecture 3 – Source Code Management 39

Introduction to git

• Create and push new branches

January 16, 2018 Lecture 3 – Source Code Management 40

Introduction to git

A few tips
1. Commit often, push infrequently

1. For each feature / fix / change / file save your edit history, push at end of session

2. Write good commit messages
1. “Fix”, “Update”, “edits” are all bad commit messages
2. Be short but descriptive. “Fixes issue #35; >1 period in file name break script”

3. Test before you push
1. Try not to push broken code, especially to master

4. Learn how to reset your branches and don’t be afraid to restart a feature

January 16, 2018 Lecture 3 – Source Code Management 41

Outline

• Source code management and version control

• Introduction to git

• Class Github

January 16, 2018 Lecture 3 – Source Code Management 42

Class Github

https://github.gatech.edu/compgenomics2018/

• This site will contain all your code, raw analysis and other work
product

• During the semester, these data will be private, afterwards they will
be open-sourced (on Github.com)

January 11, 2018 Lecture 2 – Wiki and Github 43

https://github.gatech.edu/compgenomics2018/

Github assignment

• Visit the People repo:
https://github.gatech.edu/compgenomics2018/people

• Create a new fork

• Add a profile about yourself (you can copy the text from your wiki
page). Be sure to include the Team and groups you’re on

• Stage, commit and push your work. Then create a pull request

January 16, 2018 Lecture 3 – Source Code Management 44

https://github.gatech.edu/compgenomics2018/people

Cloning the repository

January 16, 2018 Lecture 3 – Source Code Management 45

Creating a pull request

January 16, 2018 Lecture 3 – Source Code Management 46

Finishing up

• Once I’ve reviewed your pull request, I’ll either:
• Accept it, merge your changes and add you to our organization
• Or ask you to make some changes

• Feel free to explore the features available to you

January 16, 2018 Lecture 3 – Source Code Management 47

	Source Code Management
	Outline
	Outline
	The problem…
	A codebase is not just code
	Does this sound familiar?
	This semester’s problem
	Potential solutions
	Potential solutions
	Version control to the rescue
	Version control
	History of version control systems
	History of version control systems
	History of version control systems
	Management styles
	Management styles
	Management styles
	Outline
	Introduction to git
	Introduction to git
	Introduction to git
	Introduction to git
	Introduction to git
	Introduction to git
	Introduction to git
	Introduction to git
	Introduction to git
	Introduction to git
	Introduction to git
	Introduction to git
	Introduction to git
	Introduction to git
	Introduction to git
	Introduction to git
	Introduction to git
	Introduction to git
	Introduction to git
	Introduction to git
	Introduction to git
	Introduction to git
	Introduction to git
	Outline
	Class Github
	Github assignment
	Cloning the repository
	Creating a pull request
	Finishing up

