Source Code Management

Aroon Chande

Lecture 3
Tuesday, January 16, 2018

January 16, 2018

Outline

 Source code management and version control
* Introductionto giIt

e Class Github

January 16, 2018 Lecture 3 — Source Code Management

Outline

 Source code management and version control
* Introductionto git

e Class Github

January 16, 2018 Lecture 3 — Source Code Management

The problem...

Many people, working on many files in a codebase, at
the same time, collaboratively

January 16, 2018 Lecture 3 — Source Code Management

A codebase is not just code

e A “codebase” is all the files that go into a project

* In a normal project this includes:

Code (Perl, Python, and R scripts for example)

Documentation

Build configuration and tools

Examples for new users

Test cases to ensure your code does what it is supposed to do after each edit

* For you it will also include results

January 16, 2018

Lecture 3 — Source Code Management

Does this sound familiar?

1. You are writing a script for a homework assignment and just need
to add a few more things to finish

2. You make what seems like a small edit, but it breaks your script

3. You manually undo your changes...

4. ..Butitis still broken!?

Lecture 3 — Source Code Management

January 16, 2018

This semester’s problem

e Each group will generate a codebase but:

e How do you keep track of it?
e What is the latest and greatest version?
 What if you accidentally delete all your work?

 How do you share your codebase?

January 16, 2018 Lecture 3 — Source Code Management

abil-blast Version history Q S

POte nt I a | S O | u t | O n S You can restore any version below to make it the current file. All ot

August 31, 2017

y HOW do you keep traCk Of It and Wha1 = abil-blast Edited by Anna Gaines.
version? 1:36 PM Desktop

i ' e aerimht

August 22, 2017

. I T . "

- abil-blast Edited by Aroon Chande.
. , 11:51 AM Desktop
o PutttorrBropbex?> You're on the righ
= abil-blast Edited by Aroon Chande.
: / 11:11 AM Desktop
o Hhe-verston-thats-beer-copy-ane-pastet
- abil-blast Edited by Aroon Chande.
° ﬂﬁmﬁwﬁmﬂﬁﬁw ! 11:10 AM Desktop
= abil-blast Edited by Aroon Chande.
9:45 AM Desktop

January 16, 2018 Lecture 3 — Source Code Management

Potential solutions

 What if you accidentally delete all your work?

e Go through the 5 stages of grief, eat a pizza all by yourself, and don’t tell
anyone?

e Frantically email everyone trying to find another copy?
* How do you share your work?

e Email?

 Dropbox?

January 16, 2018 Lecture 3 — Source Code Management

Version control to the rescue

e Use source code management tools, like git, for version control
and file management

January 16, 2018 Lecture 3 — Source Code Management

Version control

* A source code management (SCM) tool:

e Keep multiple version of everything in your codebase, all in one place

 Requires a comment or description be given for every change made before
you update the master copy

e Can show you the differences between versions of a file

e Allows everyone to edit anything, at the same time

January 16, 2018 Lecture 3 — Source Code Management

History of version control systems

e 1972 — Source Code Control System (SCCS)
e Human readable history files
* File integrity checking
e Delta files, or only the changed lines, for updates — saved lots of space!

e Could only track text files, no binaries
e Operations get slower for every new file or change being added

e 1982 — Revision Control System (RCS)
e Based on the ideas from SCCS, scaled a little better

e Both systems could only edit one file at a time and were local only

January 16, 2018 Lecture 3 — Source Code Management

History of version control systems

e 1986 — Concurrent Versions System (CVS)

e Client-server model of data distribution, first popular (and F/OSS) SCM that
supported networking

e Multi-file editing per version with the concept of branching
e Support for binary files
e Multi-user, but not concurrently

e 2000 — Subversion (SVN)

e Client-server model with diffs instead of files being transferred
e Atomic operations(!)
e Per file / folder versioning and binary support

January 16, 2018 Lecture 3 — Source Code Management

History of version control systems

e 2005 — Mercurial (hg)
* One of the first, widely used distributed version control systems
e Designed to be highly scalable and performant
e Multi-file, multi-user concurrent editing with branching

e 2005 - Git
e Created for use by the Linux kernel developers
 The other widely used distributed version control system
* Built for flexibility and scalability

January 16, 2018 Lecture 3 — Source Code Management

Management styles

Everybody edits, where each collaborator can make changes directly to
the shared master

Shared repository

Student Student Student

January 16, 2018 Lecture 3 — Source Code Management

Management styles

Managed integration, where the integration manager reviews and
merges changes into the master repository

Master repository

T

Integration Student Student
manager (local) (local)

January 16, 2018 Lecture 3 — Source Code Management

Management styles

Corporate model, feature-specific groups with , and a leader
in charge of final integration into the master repository

Group
Lead

Student Student Student Student

January 16, 2018 Lecture 3 — Source Code Management

Outline

e Source code management and version control
* Introductionto giIt

e Class Github

January 16, 2018 Lecture 3 — Source Code Management

Introduction to gt

e Git is a free and open source SCM tool (https://git-scm.com/)

e |t was originally developed by Linus Torvalds, the creator of the Linux
kernel, to manage the kernel codebase

e Gitis opinionated

e The Linux kernel is a massive codebase
>20 million lines of code
~37,000 files
1000’s of contributors
The word “crap” appears surprisingly few times, only 191 times

https://www.linuxcounter.net/statistics/kernel

January 16, 2018 Lecture 3 — Source Code Management

https://git-scm.com/

Introduction to gt

e A project in git is called repository, or a “repo”

* Files are added, or “checked in”, to a repo by committing your local
changes to a shared master version

* A repo is copied by cloning or forking

* There can be multiple versions of a repo, all with different changes,
called branches

January 16, 2018 Lecture 3 — Source Code Management

Introduction to gt

* The integrity of the files in your repo is guaranteed
* You will get exactly the same file out of git as you put into git

e Git is a distributed version control system
* You make changes to a local copy and share your changes
e An internet connection is not required to work

January 16, 2018 Lecture 3 — Source Code Management

Introduction to gt

* When you clone a repo, you download the current version and
history of every file from the server

e Changes you make get sent back to the same server/repo

* When you fork a repo, you download the current version and history
of every file from the server and claim ownership of the repo
e Changes you make get sent to a different master copy on the server
* Your copy no longer has the same changes as the original repo you forked

January 16, 2018 Lecture 3 — Source Code Management

Introduction to gt

e Git repos are sometimes viewed as trees

 There’s a master branch that is like the trunk of the tree, the source
of each subsequent branch

* Branches can be split from the master branch or other branches

* We use branches for working on and staging fixes and new features

January 16, 2018 Lecture 3 — Source Code Management

Introduction to gt

™

Master branch

https://www.atlassian.com/git/tutorials

January 16, 2018 Lecture 3 — Source Code Management 24

Introduction to gt

 The work done on two branches can be merged together

* This process saves the history of each branch, then tries to combine
changes

* Changes to the same file in both branches may result in conflicts

January 16, 2018 Lecture 3 — Source Code Management

Introduction to gt

Merging

https://www.atlassian.com/git/tutorials/merging-vs-rebasing

26

January 16, 2018 Lecture 3 — Source Code Management

Introduction to gt

e Git follows the Work-Stage-Commit lifestyle

e Work on files in a repo you’ve cloned or forked
e Stage your work and describe work to be added (g1t add)

e Commit your changes to the repo, saving a snapshot in time (g1t commit)

January 16, 2018 Lecture 3 — Source Code Management

Introduction to gt

* You push your local changes (commits) to the server
e This allows other contributors to view your work

* You can pull other users’ changes from the server copy into your local
copy

e This is like merging two branches but instead merges forward and backward
in history

January 16, 2018 Lecture 3 — Source Code Management

Introduction to gt

* A special case of pulling, gt fetch

e« git fetch downloads and informs you of any changes but does
not apply any changes, if present

* Fetch lets you answer the question, “Has anything changed on the
server?”, without fear

January 16, 2018 Lecture 3 — Source Code Management

Introduction to gt

A simple git repository

people git:() 1s -Al

total 136

—rw-r——r—-— achande3 jordan 2059 — :15 aroon-chande.md
—rwW-r——r—- achande3 jordan 1252 — :15 binf-student.md
—r'w-r——r-—- achande3 jordan 42060 * 38

drwxr-xr-x 8 achande3 jordan 4096 4:32

drwxr-xr-x 2 achande3 jordan 22 , 11

—rw-r——r—-— achande3 jordan 53909 — =47

—rwW-r——r—- achande3 jordan 20099 — 46

—r'w-r——r-—- achande3 jordan 3295 4:32 README.md
people git:() B

January 16, 2018 Lecture 3 — Source Code Management

Introduction to gt

A simple git repository

peop
aroon
* master
remotes/origin/aroon
remotes/origin/master
people git:() git shortlog -snc | cat
12 Aroon Chande

1 Gaines, Anna Barri

people git:(

January 16, 2018 Lecture 3 — Source Code Management

Introduction to gt

* A >400 user science git repo

bioconda-recipes git:|) ¥ echo "Number of users: %(git shortlog -snc | wc -1)"
Number of users: 458
bioconda-recipes git:|) ¥ echo "Number of branches: $(git branch -a | wc -1)"

Number of branches: 344
bioconda-recipes git:() x |}

January 16, 2018 Lecture 3 — Source Code Management

Introduction to gt

* You will be using git from the command line and the Github
enterprise web Ul (github.gatech.edu) for this class

* You can edit files from the website
e But save this mostly for text files (READMEs)
e Editing scripts might break things

January 16, 2018 Lecture 3 — Source Code Management

Introduction to gt

* Making a new git repo usinggit Init

software 1s
barchart_genome.R compareHumans.pl data_importer.py manhatPlot.R

barchat_cov.R compareHumans.pm makeRandomDist.R

software git init
Initialized empty Git repository in /storage/compgenomics2018/repos/software/.git/

software git:() X

January 16, 2018 Lecture 3 — Source Code Management

Introduction to gt

e Stage the R scripts and commit them

software git:() x git add *R
software git:() x git commit -m "Initial import of R scripts for analysis”
[master (root-commit) 57ab2cb] Initial import of R scripts for analysis
O files changed, 0 insertions(+), O deletions(-)
create mode 100644 barchart_genome.R
create mode 100644 barchat_cov.R
create mode 100644 makeRandomDist.R
create mode 100644 manhatPlot.R
software git: X

January 16, 2018 Lecture 3 — Source Code Management

Introduction to gt

software git: () x echo ">print\("\Analysis completed\)\" >>makeRandomDist.R
software git: () x git add makeRandomDist.R

software git:() x git commit -m "Add completed message"”
[master afcfaf5] Add completed message
1 files changed, 1 insertions(+), O deletions(-)

software git:() x B

January 16, 2018 Lecture 3 — Source Code Management

Introduction to gt

e Push the local changes to our master version on Github

January 16, 2018

software git:() x git push origin master
Counting objects: 6, done.
Delta compression using up to 40 threads.
Compressing objects: 100% (4/4), done.
Writing objects: 100% (6/6), 512 bytes, done.
Total 6 (delta 1), reused 0 (delta 0)
remote: Resolving deltas: 100% (1/1), done.
To git@github.com:arOch/software.git
* [new branch] master -> master
software git:() x B

Lecture 3 — Source Code Management

Introduction to gt

e Pull changes made by others into the master branch

January 16, 2018

software git:() x git pull origin master

From github.com:arOch/software

* branch master -> FETCH_HEAD

Updating afcfaf5..2d66159

Fast-forward

barchat_cov.R | 1 +

1 files changed, 1 insertions(+), O deletions(-)
software git:() x B

Lecture 3 — Source Code Management

Introduction to gt

e Pull new braches off of master

software git:() x git fetch origin loop-refactor
From github.com:arOch/software
* branch loop-refactor -> FETCH_HEAD

software git:() x git branch -a
* master

remotes/origin/loop-refactor

remotes/origin/master

January 16, 2018 Lecture 3 — Source Code Management

Introduction to gt

* Create and push new branches

software git:() x git checkout -b newbranch
Switched to a new branch 'newbranch'
software git:() x git add data_importer.py
software git:() x git commit -m "Add in python importer script, needs work"
[newbranch bac002b] Add in python importer script, needs work
0 files changed, 0 insertions(+), 0 deletions(-)
create mode 100644 data_importer.py
software git:() x git push -u origin newbranch
Counting objects: 3, done.
Delta compression using up to 40 threads.
Compressing objects: 100% (2/2), done.
Writing objects: 100% (2/2), 259 bytes, done.
Total 2 (delta 1), reused 0 (delta 0)
remote: Resolving deltas: 100% (1/1), completed with 1 local object.
To git@github.com:arOch/software.qgit
* [new branch] newbranch -> newbranch
Branch newbranch set up to track remote branch newbranch from origin.
software git:() X

January 16, 2018 Lecture 3 — Source Code Management 40

Introduction to gt

A few tips
1. Commit often, push infrequently
1. For each feature / fix / change / file save your edit history, push at end of session

2. Write good commit messages
1. “Fix”, “Update”, “edits” are all bad commit messages
2. Be short but descriptive. “Fixes issue #35; >1 period in file name break script”

3. Test before you push
1. Try not to push broken code, especially to master

4. Learn how to reset your branches and don’t be afraid to restart a feature

January 16, 2018 Lecture 3 — Source Code Management

Outline

e Source code management and version control
* Introductionto git

e Class Github

Lecture 3 — Source Code Management 42

January 16, 2018

Class Github

https://github.gatech.edu/compgenomics2018/

 This site will contain all your code, raw analysis and other work
product

e During the semester, these data will be private, afterwards they will
be open-sourced (on Github.com)

Lecture 2 — Wiki and Github 43

January 11, 2018

https://github.gatech.edu/compgenomics2018/

Github assignment

* Visit the People repo:
https://github.gatech.edu/compgenomics2018/people

* Create a new fork

* Add a profile about yourself (you can copy the text from your wiki
page). Be sure to include the Team and groups you’re on

e Stage, commit and push your work. Then create a pull request

January 16, 2018 Lecture 3 — Source Code Management

https://github.gatech.edu/compgenomics2018/people

Cloning the repository

aroon git clone git@github.gatech.edu:achande3/people.qgit
Initialized empty Git repository in /storage/compgenomics2018/repos/aroon/people/.qgit/
remote: Counting objects: 41, done.
remote: Compressing objects: 100% (4/4), done.
remote: Total 41 (delta 0), reused 0 (delta 0), pack-reused 37
Receiving objects: 100% (41/41), 133.41 KiB, done.
Resolving deltas: 100% (13/13), done.
aroon [}

January 16, 2018 Lecture 3 — Source Code Management

Creating a pull request

This branch is 1 commit ahead of compgenomics2018:master. i) Pull request [5] Compare

4

Comparing changes

Choose two branches to see what's changed or to start a new pull request. If you need to, you can also compare across forks.

i:! base fork: compgenomics2018/people ~ base: master~ | ... | head fork: achande3/people ~ compare: master v

v Able to merge. These branches can be automatically merged.

9N e CEICE NG TES A Discuss and review the changes in this comparison with others.

-0~ 1 commit 1 file changed (7 0 commit comments 42 1 contributor

January 16, 2018 Lecture 3 — Source Code Management 46

Finishing up

* Once I've reviewed your pull request, I'll either:
e Accept it, merge your changes and add you to our organization
e Or ask you to make some changes

e Feel free to explore the features available to you

January 16, 2018 Lecture 3 — Source Code Management

	Source Code Management
	Outline
	Outline
	The problem…
	A codebase is not just code
	Does this sound familiar?
	This semester’s problem
	Potential solutions
	Potential solutions
	Version control to the rescue
	Version control
	History of version control systems
	History of version control systems
	History of version control systems
	Management styles
	Management styles
	Management styles
	Outline
	Introduction to git
	Introduction to git
	Introduction to git
	Introduction to git
	Introduction to git
	Introduction to git
	Introduction to git
	Introduction to git
	Introduction to git
	Introduction to git
	Introduction to git
	Introduction to git
	Introduction to git
	Introduction to git
	Introduction to git
	Introduction to git
	Introduction to git
	Introduction to git
	Introduction to git
	Introduction to git
	Introduction to git
	Introduction to git
	Introduction to git
	Outline
	Class Github
	Github assignment
	Cloning the repository
	Creating a pull request
	Finishing up

