Final Results, Genome

Assembly

BIOL 7210: Computational Genomics - Spring 2018
Team-1 Members: Kunal Agarwal, Victoria Caban, Vasanta
Chivukula, Seonggeon Cho, Siarhei Hladyshau, Hunter
Seabolt, Nirav Shah, Tianze Song, Qinwei Zhuang

Pipeline

Trimming and Quality Control

Trimming raw data with Trimmomatic

- ILLUMINACLIP: trims adapter sequences in the reads
- SLIDINGWINDOW: trims the reads based on the threshold quality score set by a user
*4:20 was used in our samples
- MINLEN: drops reads if they are below an assigned length
*20 was set as the minimum length

Trimmomatic Successfully Removes Low Quality and Adapter Reads
 FastQC: Mean Quality Scores
 FastQC: Mean Quality Scores

Before Trimming
FastQC: Adapter Content

After Trimming
FastQC: Adapter Content

Reference Based Assembly

MASH

- MinHash Algorithm is used by MASH.
- MinHash algorithm provides an estimation of the Jaccard index.
- MASH evaluates mutation distance using Jaccard index between the genomes for similarity.

Evaluation of distance between samples

Choosing Reference Genomes

Reference Based Assembly

Trimmed reads
Unmapped reads

Scaffolding with SSpace

reference genome

?
Why to assemble unmapped reads separately?

Importance of reference genome

maxl VS dist

Linear Regression

Residuals:
Min 1Q Median 3Q Max $-2002720-836508-1661235765303190016$

Coefficients:

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|t\|)$
(Intercept)	3246617	157595	$20.601<2 e-166^{* * *}$	
all_data\$dist -137253228	20458750	-6.709	$1.25 e-10 * * *$	

20458750
-6.709 1.25e-10 ***

Residual standard error: 1146000 on 256 degrees of freedom Multiple R-squared: 0.1495, Adjusted R-squared: 0.1462
F-statistic: 45.01 on 1 and 256 DF, p-value: $1.252 e-10$

Pearson's product-moment correlation

$t=-6.7088$, df $=256, p$-value $=1.252 \mathrm{e}-10$
alternative hypothesis: true, correlation is not equal to 0 95 percent confidence interval: $-0.4858635,-0.2776702$ sample estimates: cor, -0.3866826
de Novo Assembly

de Novo Assembly Using SPAdes

It is an assembler that works based on DeBruijn graphs
Designed to assemble small genome
Do scaffolding by itself
Supports paired-ends and unpaired reads
Give flexibility in Kmer selection
Spades.py --careful -k kmer size --pe1-1 forward_paired.fq --pe1-2 reverse_paired.fq --pe1-s forward_unpaired.fq --pe1-s reverse_unpaired.fq -o output_directory

SPAdes Pipeline

Read Error Correction--BayersHammer

Assemble--Spades
Mismatch Correction--improves mismatch and short indel rates in resulting contigs and scaffolds; this module uses the BWA tool, activated by --careful

SPAdes Kmer

If we give many kmers in one command line like this:
spades.py -k 41,77,99,127 --careful <your reads> -o spades_output
Output is the assembly with best N50.
spades.py -k 41 --careful <your reads> -o spades_output spades.py -k 77 --careful <your reads> -o spades_output spades.py -k 99 --careful <your reads> -o spades_output
spades.py -k 127 --careful <your reads> -o spades_output
Select the best assembly by multi-parameters

SPAdes: number of contigs

Number of Contigs for Spades 41, 77, 99 and 127

SPAdes: largest contig

All Largest Contig for Spades 41, 77, 99 and 127

SPAdes: N50

All N50 for Spades 41, 77, 99 and 127

de Novo Assembly Using Skesa

- The binary for Skesa was provided by CDC
- It is an assembler that works based on DeBruijn graphs
- It is designed for haploid genomes sequenced using Illumina
- Creates breaks at repeat regions in genomes
- Multi-threaded application - so good for scaling

```
def runSkesa(geneList)
    for a in geneList:
        fFile = '%s_forward_paired.fq' %(a)
        rFile = '%s reverse paired.fq' %(a)
        forwardFile = os.path.join(fileDir,fFile)
        reverseFile = os.path.join(fileDir,rFile)
        #print (forwardFile,reverseFile)
        skesaCmd = 'skesa --fastq %s --fastq %s \
        --contigs_out /projects/data/teaml_genomeAssembly/denovo_skesa/skesaoutput/%s.skesa.fa' %(forwardFile,reverseFile,a)
        os.system(skesaCmd)
```


Scaffolding Using SSPACE

- Scaffolding Pre-Assemblies After Contig Extension (SSPACE)
- Extends and scaffolds pre-assembled contigs
- Uses Bowtie to map all reads to the pre-assembled contigs
- A library file containing library name, read 1, read 2, insert size (500), error (0.75), FR

```
def generateLibFiles(geneList):
    for gene in geneList:
        libFileName = '%s/%s'%(libFile,gene)
    libText="%s_lib /projects/data/team1_genomeAssembly/trimming2/fastq/trimmed/%s_forward_paired.fq \
```



```
    if not os.path.exists(libFileName):
        with open(libFileName,'w') as fh:
            fh.write(libText)
            fh.close()
```


Scaffolding continued

- Contig extension was performed using SSAKE method by changing the standard -x 0 to 1
- This is followed by building scaffolds and merging contigs
- The output contains final scaffolds in fasta format, scaffolds with initial numbered contigs, a log file and a summary file

Running the SSPACE command for scaffolding using default parameters and contig extension (-x 1)

```
sspaceCmd = "perl /projects/data/team1_genomeAssembly/SSPACE/sspace_basic/SSPACE_Basic.pl -l \
/projects/data/team1_genomeAssembly/denovo_skesa/sspaceLibrary/%s \
-s /projects/data/team1_genomeAssembly/denovo_skesa/skesaoutput/%s.skesa.fa \
-x 1 -T 8 -b %s.sspace -m 20 -o 15 -a 0.8 -n 12 -g 3 -p 1" %(gene,gene,gene)
```

 os.system (sspaceCmd)
 print("Done scaffolding")

Comparison between Spades and Skesa

Parameters	Average SPAdes	Average Skesa	P value
N50	250137	229259	0.19592
\# Contigs	212	123	$1.55 \mathrm{E}-10^{* * *}$
Largest Contigs	645324	609123	0.063028
Total Length	5588948	5601627	0.44905
N's per 100kbp	2.781	11.456	$0.000104^{* * *}$

Merging assemblies

Mash Distances of Assemblies

Quality of assemblies

References

Bankevich, Anton et al. "SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing." Journal of Computational Biology 19.5 (2012): 455-477. PMC. Web. 6 Mar. 2018.

Bolger, Anthony M., Marc Lohse, and Bjoern Usadel. "Trimmomatic: A Flexible Trimmer for Illumina Sequence Data." Bioinformatics 30.15 (2014): 2114-2120. PMC. Web. 6 Mar. 2018.

Gurevich, Alexey et al. "QUAST: Quality Assessment Tool for Genome Assemblies." Bioinformatics 29.8 (2013): 1072-1075. PMC. Web. 6 Mar. 2018

Heng Li, Richard Durbin; Fast and accurate short read alignment with Burrows-Wheeler transform, Bioinformatics, Volume 25, Issue 14, 15 July 2009, Pages 1754-1760, https://doi.org/10.1093/bioinformatics/btp324

Boetzer M, Henkel CV, Jansen HJ, Butler D and Pirovano W. 2010. Scaffolding pre-assembled contigs using SSPACE. Bioinformatics. 27(4):578-579
http://bioinf.spbau.ru/spades
http://sb.nhri.org.tw/CISA/en/Instruction
https://github.com/enormandeau

Thank you for your attention!

Number of Ns for Assemblies

Mash Distances of Assemblies

Evaluation of assemblies

Choice of scaffolding tool

C

Genome Biol. 2014; 15(3),Martin Hunt, el.al.

Example of pipeline for reference guided assembly

Fig. 1 Reference-guided de novo assembly pipeline. Raw reads get quality trimmed (1. step) and mapped against a reference (2. step). Reference mapped reads are grouped into blocks with continuous read coverage. These blocks are then combined into superblocks until a total length of at least 12 kb is reached. Superblocks are overlapping by at least one block. Each superblock and all unmapped reads are separately de novo assembled (3 . step). Resulting contigs are merged into non-redundant supercontigs (4 , step). In the fifth step, reads are mapped back to the supercontigs and unmapped reads are de novo assembled to get additional supercontigs. All supercontigs are error corrected with back mapped reads (6. step) and afterwards used for scaffolding and gap closing (7. step)

BMC Bioinformatics. 2017 Nov 10;18(1):474.
Lischer HEL, Shimizu KK.

Pipeline for reference based assembly

```
bwa index -a is [reference genome]
bwa mem [reference genome] [forward and reverse reads] > [output.sam]
samtools sort [output.sam] > [output_sorted.bam]
samtools index [output sorted.bam]
samtools view -b -f 4 [output sorted.bam] > [unmapped.bam]
samtools bam2fq [unmapped.bam]> [unmapped.fastq]
samtools mpileup -v --no-BAQ -f [reference genome] [output_sorted.bam] |
    bcftools call -c | vcfutils.pl vcf2fq | seqtk seq -A > [assembly.fasta]
```


N50 for Referenced Based and Skesa Assembly

Scaffolds for Referenced Based and Skesa Assembly

Number of Ns for Referenced Based and Skesa Assembly

Length for Referenced Based and Skesa Assembly

References

Number of Contigs for Spades Assembly

Table Analyzed spades_number_of_contigs
One-way analysis of variance
P value < 0.0001
P value summary

Are means signif. different? ($\mathrm{P}<0.05$) Yes Number of groups 4
F
R square 0.3006
Bartlett's test for equal variances
Bartlett's statistic (corrected) 28.16
P value <0.0001
P value summary ***
Do the variances differ signif. ($P<0.05$) Yes

ANOVA Table	SS	df	MS	
Treatment (between columns)	$2.524 \mathrm{e}+007$	3	$8.414 \mathrm{e}+006$	
Residual (within columns)	$5.872 \mathrm{e}+007$	1024	57343	
Total	$8.396 \mathrm{e}+007$	1027		

Tukey's Multiple Comparison Test	Mean Diff.	q	Significant? P < 0.05 ?		95% Cl of diff
SPAdes 41 vs SPAdes 77	292.1	19.56	Yes	$* * *$	237.3 to 346.9
SPAdes 41 vs SPAdes 99	379.2	25.38	Yes	$* * *$	324.4 to 434.0
SPAdes 41 vs SPAdes 127	384.3	25.72	Yes	$* * *$	329.5 to 439.1
SPAdes 77 vs SPAdes 99	87.03	5.826	Yes	$* * *$	32.23 to 141.8
SPAdes 77 vs SPAdes 127	92.12	6.167	Yes	$* * *$	37.32 to 146.9
SPAdes 99 vs SPAdes 127	5.089	0.3407	No	ns	-49.71 to 59.89

Summary: SPAdes 99 and SPAdes 127 have the significantly lower contig number compared to other kmer size

Largest Contig for Spades Assembly

Parameter
Table Analyzed spades_Iarge_contigs

```
One-way analysis of variance
    P value
                < 0.0001
    P value summary ***
    Are means signif. different? (P < 0.05) Yes
    Number of groups
    F 47.50
    R square 0.1216
```

Bartlett's test for equal variances
Bartlett's statistic (corrected) 52.39
P value
< 0.0001
P value summary ***
Do the variances differ signif. $(P<0.05)$ Yes

ANOVA Table	SS	$d f$	MS	
Treatment (between columns)	$6.592 e+012$	3	$2.197 e+012$	
Residual (within columns)	$4.760 \mathrm{e}+013$	1029	$4.626 \mathrm{e}+010$	
Total	$5.419 \mathrm{e}+013$	1032		

Tukey's Multiple Comparison Test Mean Diff.
SPAdes 41 vs SPAdes 77
SPAdes 41 vs SPAdes 99
SPAdes 41 vs SPAdes 127
SPAdes 77 vs SPAdes 99
SPAdes 77 vs SPAdes 127
SPAdes 99 vs SPAdes 127
-124376
-220155
11.46
$-95779 \quad 7.174$
-29404 2.194
$66375 \quad 4.966$

Significant? P < 0.05? 95\% Cl of diff

Yes	$* * *$	-173547 to -75205
Yes	$* * *$	-269185 to -171126
Yes	$* * *$	-202999 to -104562
Yes	$* * *$	-144761 to -46797
No	ns	-78575 to 19767

Yes ** 17345 to 115405

N50 for Spades Assembly

All N50 for Spades 41, 77, 99 and 127

Parameter
Table Analyzed N50
One-way analysis of variance
P value < 0.0001
P value summary ***
Are means signif. different? ($P<0.05$) Yes
Number of groups 4
F
44.23

R square
0.1147

Bartlett's test for equal variances
Bartlett's statistic (corrected) 143.6
P value
<0.0001

P value summary ***
Do the variances differ signif. $(P<0.05) \quad$ Yes
ANOVA Table SS df MS
Treatment (between columns)
Tris
$\begin{array}{llll}\text { Residual (within columns) } & 6.034 \mathrm{e}+012 \quad 1024 & 5.893 \mathrm{e}+009\end{array}$
Total 6.816e+012 1027

Tukey's Multiple Comparison Test	Mean Diff.	q	Significant? P $<0.05 ?$	95% Cl of diff
SPAdes 41 vs SPAdes 77	-36846	7.695	Yes	$* * *$
SPAdes 41 vs SPAdes 99	-77679	16.22	Yes	$* * *$
SPAdes 41 vs SPAdes 127	-43688	9.124	Yes	$* * *$
SPAdes 77 vs SPAdes 99	-40833	8.527	Yes	$* * *$
SPAdes 77 vs SPAdes 127	-6842	1.429	No	ns
SPAdes 99 vs SPAdes 127	33991	7.098	Yes	$* * *$

Mash Distances of Assemblies

Supplementary: SPAdes Kmer Selection

For multicell paired end 250bp data:
It suggests:
spades.py -k 21,33,55,77,99,127 --careful <your reads> -o spades_output
Kmer selection can be tricky.

