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Background
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Sequence Smilarity

« Knowledge derived from sequence similarity.
e Smilar sequencestend to sharefeatures.

« Smilarity: functional, structural and evolutionary inferences.

02/08/2018 Alignment-free Sequence Analysis | CompGenomics2018 | GeorgiaTech



Sequence Alignment

» Sequence Alignment isavery useful “tool”: provides asimilarity
measure.

» 80’s-90’s: BLAST, FASTA, MAFFT, Muscle, ClustalW, PS-BLAST,
HMMER/Pfam, Mauve, BLASTZ, TBA.
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Alignment-based Analysis Drawbacks

e Assumption of linearity and conservation in stretches of
homologous sequences.

 Poor accuracy of alignment when sequence identity isbelow a
critical point.

e Depends on multiple evolutionary assumptions about the
seguences.
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Alignment-based Analysis Drawbacks
o Computationally expensive (RAM and processingtime).

* Not ideal for NGS-era (not scalable).

NGS-erarequiresrapid and accurate analysis at ahigh scale
(complete genomes, billions of sequences)

02/08/2018 Alignment-free Sequence Analysis | CompGenomics2018 | GeorgiaTech



Alignment-free Methods
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Alignment-free Sequence Analysis

“Any method that quantifies sequence similarity without
producing/using alignment at any step of the algorithm application”

Zielezinski et al., 2017
Advantages:

 Less computationally expensive.

 Resistant to shuffling and
recombination events.

 Evolutionary assumptions-free.
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Alignment-free Sequence Analysis

“Any method that quantifies sequence similarity without
producing/using alignment at any step of the algorithm application”

Zielezinski et al., 2017
Advantages:

 Less computationally expensive.

 Resistant to shuffling and
recombination events.

. ]
° EVOlUtIOnary assumptlons-free. Alignment-free sequence comparison: Wee

benefits, applications, and tools

Andrzej Zielezinski', Susana Vinga”, Jonas Almeida® and Wojciech M. Karlowski'"

Zielezinski et al. Genome Biology (2017) 18:186
DOI 10.1186/513059-017-1319-7
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Classification of Alignment-free Methods

 Word freguency-based, and
 Information-theory based.

e Other alignment-free methods:
e Chaosgame representation
e [terated maps
» Graphical representation of DNA
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Word Frequency-based Methods

Depend on the amount of shared
words/ ~mers between sequences.

4-mer: ATTCGTCCAAGATCTATG
Three steps:
e k-mer extraction and grouping.

e Frequencies quantification.
e Dissimilarity quantification.
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Word Frequency-based Methods

Depend on the amount of shared Query sequences X y
words/ ~mers between sequences. Wordsize:s  wi[T]  w) [

TGT ATG

GTG e

4-mer: ATTCGTCCAAGATCTATG 76T
Three steps: b o w=wiuw [ [ [ (S
» kmer extraction and grouping. Wordeounts c; IEIEIE -; ENEUENEN
» Frequencies quantification. Gistanea” 165763 VIONRH1APH w21 /3=1.73
» Dissimilarity quantification. Petween fwo sarmpe DNA sequences ATGTGTG and GATGTG

usign the Euclidean distance. S
Zielezinskiet al., 2017
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Information-theory Based Methods

Depend on the amount of shared
iInformation (complexity/entropy).

P less complex

q more complex

Two steps:
o Complexity calculation.
 Dissimilarity quantification.
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Information-theory Based Methods

Depend on the amount of shared

iInformation (complexity/entropy).

o less complex

q more complex

Two steps:
o Complexity calculation.
 Dissimilarity quantification.

Query sequences
x y xy [ATGTGTGCATGTG]

Lempel-Ziv complexity

I 7 G| (G 1 A G [ G A G [ G O B G T

c(x)=4 o(y)=5 c(xy)=7

Normalized compression distance

C(xy)-min{C(x), C(y)} |7-4
max{C(x), C(y)}

Fig. 2 Alignment-free calculation of the normalized compression
distance using the Lempel-Ziv complexity estimation algorithm.
LempelZiv complexity counts the number of different words in
seguence when scanned from left to right (e.g., for s = ATGTGTG,
Lempel-Ziv complexity is 4: A|T|G|TG). Description of compression
algorithms in alignment-free analysis has been reviewed extensively.

Zielezinskiet al., 2017
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Alignment-free Methodsin NGSData Analysis

e Transcript identification (Kallisto, Sailfish, Salmon).
o Genomic variability profiling (FastGT, LAVA).

o Assembly: error correction (Quorum, Lighter, Trowel), overlapping
(MHAP algorithm, Miniasm), and scaffolding (LINKS).

« Metagenomics: speciesidentification/taxonomic profiling (Kraken,
CLARK,MASH, stringMLST, STing, Taxonomer).

* Phylogenetics (AAF,NGSMC, kSNP).

Zielezinski et al. Genome Biology (2017) 18:186
DOI 10.1186/s13059-017-1319-7
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Alignment-free for Research Purposes
Sequence similarity

 CAFE (desktop, GUI)
28 distance measures.
e Dissimilarity matrices.
* Dendrograms, heatmaps, PCA and networks.

 Alfree (Web)

« 38 distance measures.
 Fully automated analysis.
« Consensus phylogenetictree.
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STing (Sequence Typing)

 Alightweight, alignment- and assembly-free application for the
NGSera, that belongsto the group of word frequency-based
methods.

» Two functionalities for NGSsample analysis

Sequence Typing Gene Detection
Prediction of the Prediction of
Sequence Type (ST) presence/absence of a

gene of interest
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Sequence Typing

e |dentifying organismswithin a
species.

 Human pathogens of one species
can comprise very diverse set of
organismes.

* Typing technique must have a good
discriminatory power.
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Multilocus Sequence Typing (MLST)

e Pre-NGSera

PCR Sequencing ass?g.frlsent ST assignment

e Gene-based E— .GCTTG.. 2

approach (7 — _TAGGC. 3

housekeeping) — ATGCG. |

— .CGCTG.. | ST239

e Extensive — TGATC.

Information

available O :

(PUbMLST, m— T

M I_S-I-net) Isolate PCR Allele Allelic Sequence

DNA products sequences profile type
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MLST: Computational Methodswith NGSData

~8.6

HOURS
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MLST: Computational Methodswith NGSData

status quo our approach Alignment- and assembly-free
with minimum expertise and
timerequired.

~8.6 <60

HOURS SECONDS
PER SAMPLE
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MLST: Computational Methodswith NGSData

sotus quo [Jd| o sporoach Alignment- and assembly-free
" with minimum expertise and
timerequired.

Genome analysis

yping | Detect! stringlVILST: a fast k-mer based tool for
multilocus sequence typing
< 6 o Anuj Gupta'?, I. King Jordan™?? and Lavanya Rishishwar>3*

~8.6

HOURS SECONDS Bioinformatics, 33(1), 2017, 119-121
PER SAMPLE IR =L rieiomminyis:

Application Note
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STing

» Addressesthe shortcomings of its predecessor (stringMLST):
speed and RAM consumption on larger typing schemes (rMLST,
cgMLST).

» Uses Enhanced Suffix Arrays as core algorithm data structure.

Quick Searchtime
determination of the dependson
member ship of an guery length, not on

Input string the DB size
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STing - Structure

Typer o

Sequence typing

directly from read §

(FASTQ) files <
Indexer
Database

construction from
FASTA files Enhanced Suffix

Array Index Detector

Gene detection
directly from read
(FASTQ) files
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Algorithm
Overview

02/08/2018

(A) Database Indexing

Sequences from Enhanced Suffix
the user database Arrays (ESA) construction

Alignment-free Sequence Analysis | CompGenomics2018 | Georgia Tech

STing index stored
as ESA
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(A) Database Indexing

u
Algorithm
1 Sequences from Enhanced Suffix
Over VI eW the user database Arrays (ESA) construction

STing index stored
as ESA

>apkl prof ST
Typer ATCGTGCTCGA + 1462738 1
CTGGTGATATT 1458214 2
GTCGAACTGCG 3456192 3

sequences
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(A) Database Indexing

| |
Algorithm
Overview Seauences from

STing index stored
as ESA

>apkl

Detector ATCGTGCTCGA

CTGGTGATATT
GTCGAACTGCG

sequences
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Algorithm
Overview

@SRR1/1

ATCGTGCTCGA
+

IT:#<9==94#7

02/08/2018

(A) Database Indexing

Sequences from
the user database

(B) Sequence Variant Detection

Input sequence read file
(paired or single end)

Enhanced Suffix
Arrays (ESA) construction

Discard read ]—‘

Take the next read
in the file

1

Yes

More reads
to process?

No

l

No

Middle
k-mer present in
the index?

STing index stored

as ESA

K-merize the
entire read

Probable sequences:
sequences with highest
k-mer counts

Compute depth and
coverage uniformity in
probable sequences
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ncrement allele counts
for each k-mer found
in the index

Report database
sequences detected
in the input reads file
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Algorithm
Overview

@SRR1/1

ATCGTGCTCGA
+

IT:#<9==94#7

02/08/2018

(A) Database Indexing

Sequences from
the user database

(B) Sequence Variant Detection

Input sequence read file
(paired or single end)

Enhanced Suffix
Arrays (ESA) construction

Take the next read

in the file

I

Yes

More reads

Discard read }—‘

No

Middle
k-mer present in
the index?

STing index stored

as ESA

ATTCGTCCAAGATCTATG

K-merize the
entire read

to process?

No

l

Probable sequences:
sequences with highest
k-mer counts

@j‘ .,

ncrement allele counts
for each k-mer found
in the index

Compute depth and
coverage uniformity in
probable sequences
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Report database
sequences detected
in the input reads file
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- (A) Database Indexing
Algorithm
Overview Seduences from

STing index stored
as ESA

ATTCGTCGATGATCTATG
(B) Sequence Variant Detection
Discard read }—‘ ATTC GTCG ATGA TCTA
TTCG TCGA TGAT CTAT
No TCGT CGAT GATC TATG

CGTC GATG ATCT

Middle
k-mer present in
the index?

@SRR1/1 .
ATCGTGCTCGA Input sequence read file |  Take the next read

N (paired or single end) f in the file
I1:#<9==9%?

K-merize the
entire read

Yes —

I

Yes

DB ¥
Increment allele counts
for each k-mer found

More reads
to process?

in the index
Nlo
Probable sequences: Compute depth and Report database
sequences with highest coverage uniformity in sequences detected
k-mer counts probable sequences in the input reads file
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- (A) Database Indexing
Algorithm
Overview Seduences from

STing index stored
as ESA

ATTCGTCGATGATCTATG

ALLC GTCG ATGA TCTA
‘@ TCGA TGAT CTAT
T CGAT GATC TATG
CGTC GATG ATCT

(B) Sequence Variant Detection

@SRR1/1 .
ATCGTGCTCGA Input sequence read file |  Take the next read

N (paired or single end) ' in the file
I1:#<9==9%?

K-merize the

k-mer present in ;
entire read

the index?

Yes —

I

Yes

DB ¥
Increment allele counts
for each k-mer found

More reads
to process?

in the index
Nlo
Probable sequences: Compute depth and Report database
sequences with highest coverage uniformity in sequences detected
k-mer counts probable sequences in the input reads file
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- (A) Database Indexing
Algorithm
Overview Seduences from

STing index stored
as ESA

(B) Sequence Variant Detection

Discard read }—‘

No

Middle
k-mer present in
the index?

@SRR1/1 .
ATCGTGCTCGA Input sequence read file Take the next read

i (paired or single end) in the file

K-merize the
entire read

IT:#<9==94#7 T

Yes adk aroE

adk_1 65 aroE_1 48 DB 4
|

Morereads adk_2 63 aroE_2 50 ncrement allele counts
to process? ad k 3 62 aroE 3 52 ——— for each k-mer found

in the index
adk_25 61 aroE_45 51
Nlo
Probable sequences: Compute depth and Report database
sequences with highest coverage uniformity in sequences detected
k-mer counts probable sequences in the input reads file
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Algorithm
Overview

(A) Database Indexing

Sequences from
the user database

(B) Sequence Variant Detection

@SRR1/1
ATCGTGCTCGA
A
II:#<9==9#?

Input sequence read file

Enhanced Suffix o
Arrays (ESA) construction Sl ek sraiEe

as ESA

Discard read

Y

Take the next read

(paired or single end)

02/08/2018

61 aroE_45 51

in the file

I

Yes

More reads

Middle
k-mer present in
the index?

K-merize the
entire read

Yes—

=
|

ncrement allele counts

to process?

No

|

Probable sequences:
sequences with highest
k-mer counts

for each k-mer found

in the index
Compute depth and Report database
coverage uniformity in sequences detected
probable sequences in the input reads file

Alignment-free Sequence Analysis | CompGenomics2018 | Georgia Tech 35



Algorithm
Overview

02/08/2018

@SRR1/1
ATCGTGCTCGA
A
II:#<9==9#?

(A) Database Indexing

Sequences frq
the user datab

(B) Sequence Variant Detection

Input sequence read file

(paired or single end)

aroE
aroE_1 48

aroE_2 50

arokE_45 51

ing

Allele

assignment

ST assignment

¢ stored
A
.GCTTG.. 2
.TAGGC.. 3
JATGCG.. |
.CGCTG.. I ST239
K-merize the
entire read
.GCTTG.. 3
. DB | v
Allele Allelic Sequence Increment allele counts
sequences profile type for each k-mer found
in the index
Nf
Probable sequences: Compute depth and Report database

sequences with highest
k-mer counts

coverage uniformity in
probable sequences

Alignment-free Sequence Analysis | CompGenomics2018 | Georgia Tech

sequences detected
in the input reads file
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Algorithm
Overview

@SRR1/1

ATCGTGCTCGA
+

IT:#<9==94#7

02/08/2018

(A) Database Indexing

Sequences from
the user database

Enhanced Suffix

Arrays (ESA) construction Sl Inees sl

as ESA

(B) Sequence Variant Detection

Input sequence read file

Discard read }—‘

No

(paired or single end)

Middle .
Take 'the ne?(t read k-mer present in Yes—» K-m_erlze the
in the file the index? entire read
Yes

DB ¥
Increment allele counts
for each k-mer found

More reads
to process?

in the index
No adk aroE B ST154
l 1 3
Probable sequences: Compute depth and Report database

sequences with highest
k-mer counts

coverage uniformity in
probable sequences

sequences detected
in the input reads file
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STing: Sequence Typing

Alignment-free Sequence Analysis | CompGenomics2018 | Georgia Tech

38



STing- Typing Dat aset

02/08/2018

DB Sze

Species Scheme #Locus (sequences) # Samples
C. jauni MLST 7 4117 10
C. trachomatis MLST 7 218 10
S pnevimoniae MLST 7 3,319 10
N. meningitiais MLST 7 5,325 1,009
N. meningitiais rMLST 53 461,054 20
N. meningitialis cgMLST 1,605 639,542 20

Alignment-free Sequence Analysis | CompGenomics2018 | Georgia Tech

rMLST: Ribosomal MLST; cgMLST: Core Genome MLST
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STing- Typing Dat aset

02/08/2018

DB Sze

Species Scheme #Locus (sequences) # Samples
C. jguni MLST 7 4117 10
C. trachomatis MLST 7 218 10
S pneumoniae MLST 7 3,319 10
N. meningitidis MLST 7 5,325 1,009
N. meningitidis rMLST 53 461,054 20
N. meningitidis cgMLST 1,605 639,542 20

Alignment-free Sequence Analysis | CompGenomics2018 | Georgia Tech

rMLST: Ribosomal MLST; cgMLST: Core Genome MLST
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STing- Typing Dat aset

02/08/2018

DB Sze

Species Scheme #Locus (sequences) # Samples
C. jeguni MLST 7 4117 10
C. trachomatis MLST 7 218 10
S pneumoniae MLST 7 3,319 10
N. meningitiais MLST 7 5,325 1,009
N. meningitials rMLST 53 461,054 20
N. meningitialis cgMLST 1,605 639,542 20
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rMLST: Ribosomal MLST; cgMLST: Core Genome MLST
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STing - Typing Performance

Correct Allele Predictions (%)

0 25 50 75 10
| |

C. jejuni — MLST (7 I)

N. meningitidis — MLST (7 1)

| |

S. pneumoniae — MLST (7 )

L e —

N. meningitidis — rMLST (53 |)

N. meningitidis — cgMLST (1,605 |)

[ IstringMLST [ETSTing — Sensitive IBSTing — Fast
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STing - Typing Performance

N. meningitidis — rMLST (53 |)

N. meningitidis — cgMLST (1,605 1) | 0.8x

A Correct Allele Predictions (%) Time (s)
0 25 50 75 100 1 10 100 1000 10000
C. jejuni — MLST (7 1) | | 4—*

N. meningitidis — MLST (7 1) |

S. pneumoniae — MLST (7 1) | ] i .

C. trachomatis — MLST (7 ) _ lﬁg} ]
[
[

&0@)';5' 00'; éo /;D’,‘S
o "
@o “ Z <. OQ:S

[ IstringMLST [ETSTing — Sensitive IBSTing — Fast
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STing - Typing Performance

Correct Allele Predictions (%)

0 25 50 75 100
| |

C. jejuni — MLST (7 I)

N. meningitidis — MLST (7 1)

| |

S. pneumoniae — MLST (7 )

L e —

N. meningitidis — rMLST (53 |)

N. meningitidis — cgMLST (1,605 |)

Time (s)

1 10 100 1000 10000

]

-

]

[ ]

| 2.8x |

[ |

| 7.4x

| 24.2x

[ |

| 0.8x
& G 7 7
oy O 4 Ny

@@C% ',‘%o@ ’50@

[ IstringMLST [ETSTing — Sensitive IBSTing — Fast

02/08/2018
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C Memory (RAM)
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1 10° 10° 10° 10
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| |
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| - |
| |
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STing - Typing Performance

Predictions (%)

100

~
@)

(&)
o

N
)]

Detection Limit

C. jejuni N. meningitidis

(

1x

02/08/2018

3x

5x 10x 20x 40x 1x 3X 5x  10x 20x 40x
Sequencing Depth

[ ]Predicted STs [ |Correct STs [Correct Alleles
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STing - Typing Performance

A Detection Limit B Performance
C. jejuni N. meningitidis
100 1 - 2500 - 40 min
N — 2000
’0@‘ 751 / 30 min
e B @ 1500
S 50 o N
% i= 1000+ / 15 min
o)
o 257 500 1
—® 5 min
e .
0-’7 |7 0] & = & = == =0~ 1 min
1x 3x 5x 10x 20x 40x 1x 3x 5x 10x 20x 40x 1x 3% 5x  10x 20x 40x
Sequencing Depth Sequencing Depth
[ |Predicted STs [ |Correct STs [ Correct Alleles — Single core  ==20 cores

=o= . meningitidis (n=725) C. jejuni (N=578)
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STing: Gene Detection

Alignment-free Sequence Analysis | CompGenomics 2018 | Georgia Tech
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STing— Gene Detection Dataset

* We evaluated whether we can detect AMR genes (n=16) fromthe
seguence reads of 12 genomes of nine species (positive samples)

 We artificially excised the AMR genes from each of the genomesto
generate negative samples

 We simulated reads at 20x and 40x coverage from both positive
and negative samples
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STing— Gene Detection Performance

Species/Strain

M. tuberculosis
K. pneumoniae
B. anthracis

C. difficile

S. pneumoniae

N. gonorrhoeae

N. meningitidis 053442
N. meningitidis C FAM18
N. meningitidis Z2491

N. meningitidis MC58

S. aureus

C. acetobutylicum

02/08/2018

AMR Genes Present

ksga, pbpla, pbp2b, gackET
ksga, pbpla, pbp2b, gack1, ermC

AMR Genes

100%accuracy

aac2ic

aphoid

bl2a

ermb

pbp2x

ksga, pbpla, pbp2b

ksga, pbpla, pbp2b

ksga, pbpla, pbp2b

mepa

tetpa

[ | Correct Predictions

Alignment-free Sequence Analysis | CompGenomics2018 | GeorgiaTech
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STing— Other Applications

e Virulence factor (VF) gene detection (e.g. Shigatoxin
and hemolysin loci).

« Antimicrobial (AMR) gene detection in fungal isolates.

» Gene detection iIn metagenome samples.

02/08/2018 Alignment-free Sequence Analysis | CompGenomics2018 | GeorgiaTech
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STing— Other Applications

» Virulence factor (VF) gene detection (e.g. Shigatoxin PhD Student (Binf)
and hemolysin loci).

« Antimicrobial (AMR) gene detection in fungal isolates.

» Gene detection iIn metagenome samples.
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Conclusions

» Faster alternatives of analysis are necessary to face the challenges
fromthe NGS-era.

 Although alignment-based analysis are slow, not scalable,they are
Irreplaceable! (e.g.annotation, ancestral DNA reconstruction,
seguence evolution rate calculations).

* We applied the alignment-free paradigm for sequence typing and
gene detection (accurately and efficiently).
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Conclusions

« STing algorithm scales efficiently to genome-scale typing schemes
(cgMLST).

 STing performs orders of magnitude better than existingtools.

 Possible applications of STing include culture-free diagnostics as
well as virulence factor and antimicrobial resistance profiling
directly from NGSreads.
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