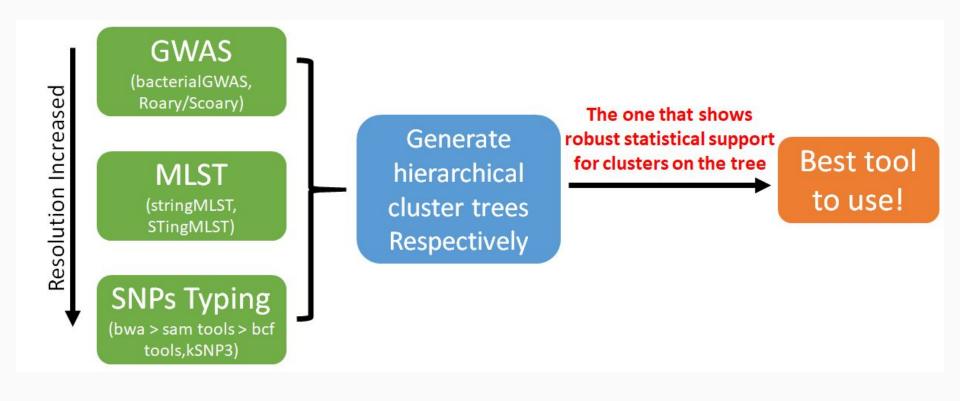
Comparative Genomics Lab & Preliminary Result

Team 1


Team Members: Frank Ambrosio<u>, Hunter Seabolt</u>, Vasanta Chivukula, Junyu Li, <u>Yiqiuyi Liu</u>, Seonggeon Cho, <u>Yihao Ou</u>, Qinyu Yue, Siarhei Hladyshau

Outline

Content

- Introduction
- GWAS
- MLST
- SNP calling
- Comparison & Decision

Introduction

Introduction

Samples Description

Klebsiella spp.	Susceptible	Heteroresistant	Resistant	Total
Number of sample	212	21	25	258

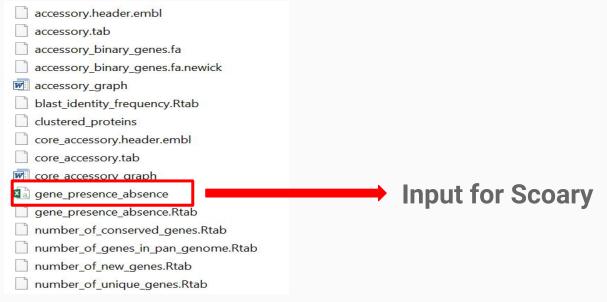
Test Samples

Klebsiella spp.	Susceptible	Heteroresistant	Resistant	Total
Number of sample	10	5	5	20

Introduction

GOAL

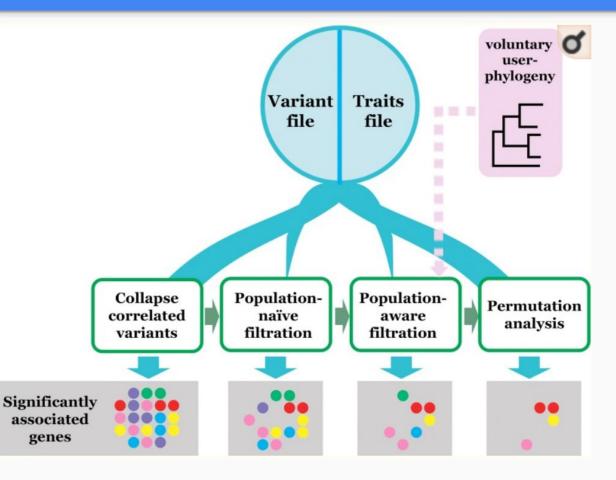
• **Explore** gene features in *Klebsiella* that confer colistin resistance. Looking for fixed genomic differences indicating a "shared" ancestry between groups.


• **Predict** colistin susceptibility of other *Klebsiella* spp. strains

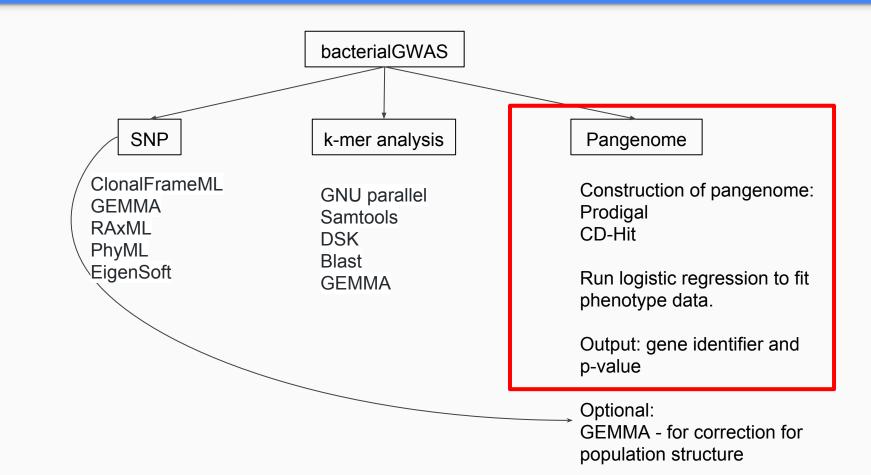
Roary/Scory

Input:

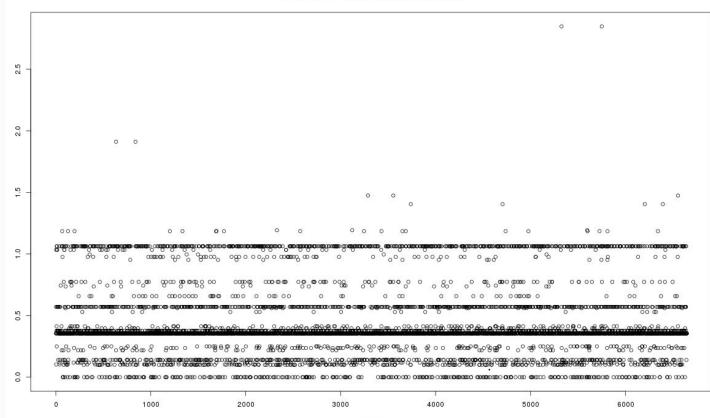
GFF3 files, must contain the nucleotide sequence at the end of the file (output from Prokka)


Output:

Roary/Scory


Input:

- gene_presence_ab sence.csv file from Roary
- list of traits to test associations



Roary/Scory

Column name	Explanation
Gene	The gene name
Non-unique gene name	The non-unique gene name
Annotation	Annotation
Number_pos_present_in	The number of trait-positive isolates this gene was found in
Number_neg_present_in	The number of trait-negative isolates this gene was found in
Number_pos_not_present_in	The number of trait-positive isolates this gene was not found in
Number_neg_not_present_in	The number of trait-negative isolates this gene was not found in
Sensitivity	The sensitivity if using the presence of this gene as a diagnostic test to determine trait- positivity
Specificity	The specificity if using the non-presence of this gene as a diagnostic test to determine trait-negativity
Odds_ratio	[Odds ratio] (https://en.wikipedia.org/wiki/Odds_ratio)
p_value	The naïve p-value for the null hypothesis that the presence/absence of this gene is unrelated to the trait status

trait1_0_SNP_logreg GWAS manhattan plot

SNPid

	0 0 0 0 0
	0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	o (
	00 ⁰ 00
000 000 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0	
, , , , , , , , , , , , , , , , , , ,	0 0 0 00 0
കോറ്റ്റ്റ്റ്റ്റ്റ്റ്റ്റ്റ്റ്റ്റ്റ്റ്റ്റ്	

trait2_0_SNP_logreg GWAS manhattan plot

	Roary/Scoary	BacterialGWAS		
Input	GFF3 file from Prokka (annotated gene)	Can be assembly or Customized pangenome		
Output	Variant and p-value	Variant and p-value		
Pros/Cons	Developed specifically for microorganism	Developed specifically for bacteria		
	Takes input strait from Prokka, no need for extra work	customized pangenome is an option and should be able to generate by annotation group		
	Easy to installed and run	Required a lot of dependence		
	population stratification is taken into account	correction for population stratification using SNP data		

stringMLST:

- Assembly-free k mer-based MLST tool
- Input: pre-assembled FASTQ files, database
- Output: sequence type (ST) of the sample and allele profile corresponding to the ST

Running stringMLST:

stringMLST.py --buildDB -c klebsiella-pneumoniae_config.txt -k 35 -P PN

stringMLST.py --predict -1 forward.fastq.gz -2 reverse.fastq.gz -k 35 -p --prefix PN

[loci] gapA mlst dbs/klebsiella-pneumoniae/klebsiella-pneumoniae gapA.tfa mdh mlst dbs/klebsiella-pneumoniae/klebsiella-pneumoniae mdh.tfa tonB mlst dbs/klebsiella-pneumoniae/klebsiella-pneumoniae tonB.tfa mlst dbs/klebsiella-pneumoniae/klebsiella-pneumoniae infB.tfa infB mlst dbs/klebsiella-pneumoniae/klebsiella-pneumoniae pgi.tfa pgi mlst dbs/klebsiella-pneumoniae/klebsiella-pneumoniae rpoB.tfa rpoB phoE mlst dbs/klebsiella-pneumoniae/klebsiella-pneumoniae phoE.tfa [profile] mlst dbs/klebsiella-pneumoniae/klebsiella-pneumoniae profile.txt profile

multi-FASTA files with allele sequence

ST and the allele profile corresponding to the ST

MLST

stringMLST Output:

-	Sample [÷]	gapA 🏺	infB 🗧	mdh ÷	pgi 🌣	phoE 🌼	rpoB 🌐	tonB 🌻	ST ÷
1	SRR3982229	3	3	1	1	1	1	79	258
2	SRR3982316	3	3	1	1	1	1	79	258
3	SRR4035118	3	3	1	1	1	1	79	258
4	SRR5666552	3	3	1	1	1	1	79	258
5	SRR5666401	3	4	6	1	7	4	4	273
6	SRR5666402	2	1	1	1	4	4	4	17
7	SRR5666403	2	1	2	1	4	4	87	294
8	SRR5666404	3	3	1	1	1	1	79	258
9	SRR5666405	2	5	2	2	7	1	10	48
10	SRR5666406	2	1	2	1	4	4	4	16
11	SRR5666407	3	3	1	1	1	1	18	340
12	SRR5666408	2	1	5	1	17	4	42	111
13	SRR5666409	2	5	2	2	7	1	10	48
14	SRR5666410	3	3	1	1	1	1	4	11

MLST

Current problem: database

• 7 housekeeping genes is not nearly enough

Next step:

• new database with stringMLST & Gene detection function with STing

List of genes of interest:

• AMR genes, colistin-associated genes, efflux pump associated genes, the plasmid mediated resistance mcr family of genes

STing

Functionality:

- Database Construction
- Sequence Typing
- Gene Detection

List of genes of interest:

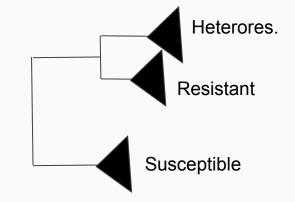
• AMR genes, colistin-associated genes, efflux pump associated genes, the plasmid mediated resistance mcr family of genes

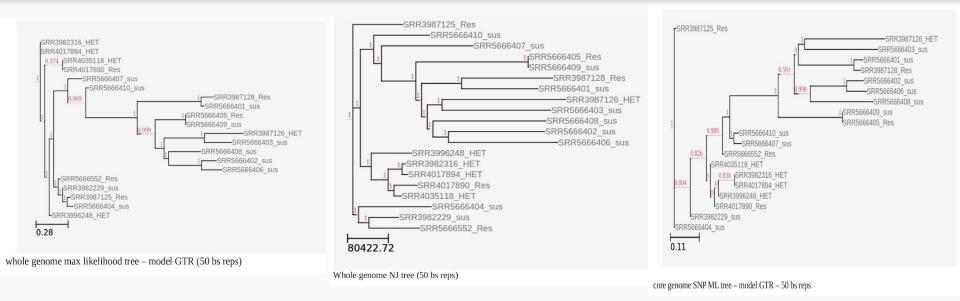
STing

Database Construction

- Much easier for STing Gene Detection
- Colistin resistance associated genes pulled from CARD DB for testing
- Expect to see high occurrence of MCR gene family in resistance isolates

Next steps:


- Construct a new database with for STing Gene Detection
 - Include all colistin resistance associated genes from all available AMR databases
- Construct a database for STing Sequence Typing and String MLST


kSNP3:

Alignment-free kmer-based SNP calling tool Input: (wg) Fasta file, model/bootstrap parameters Output: Newick trees, etc.

Expected(Hoped for) output: 3 monophyletic clusters (het, res, sus) With good statistical support

SNP

Input: de novo assembled Skesa fasta files

Notes from the trees:

Same clusters appearing on multiple phylogenies with strong bootstrap support No clear distinction between het/res/sus groups.

Comparison

Trees show very similar topologies -- phylogenetic signal is present, at differing levels of resolution (SNP trees have higher resolution).

Comparison

GOAL RECAP

- **Explore** gene features in *Klebsiella* that confer colistin resistance. Looking for fixed genomic differences indicating a "shared" ancestry between groups.
 - Little to no evidence of fixed genomic features based on SNP calling, GWAS, MLST
 - Cannot explain the AMR patterns observed with current anaylses (need to look for alternative hypotheses)
- **Predict** colistin susceptibility of other *Klebsiella* spp. strains

Citation

- "Roary: Rapid large-scale prokaryote pan genome analysis", Andrew J. Page, Carla A. Cummins, Martin Hunt, Vanessa K. Wong, Sandra Reuter, Matthew T. G. Holden, Maria Fookes, Daniel Falush, Jacqueline A. Keane, Julian Parkhill, Bioinformatics, (2015). doi: <u>http://dx.doi.org/10.1093/bioinformatics/btv421</u>
- Brynildsrud O, Bohlin J, Scheffer L, Eldholm V. Rapid scoring of genes in microbial pan-genome-wide association studies with Scoary. Genome Biol. 2016;17:238 DOI: 10.1186/s13059-016-1108-8
- Fadista, J., Manning, A. K., Florez, J. C., & Groop, L. (2016). The (in)famous GWAS P-value threshold revisited and updated for low-frequency variants. European Journal of Human Genetics, 24(8), 1202-1205. doi:10.1038/ejhg.2015.269
- Gardner, S. N., Slezak, T., & Hall, B. G. (2015). kSNP3. 0: SNP detection and phylogenetic analysis of genomes without genome alignment or reference genome. Bioinformatics, 31(17), 2877-2878.