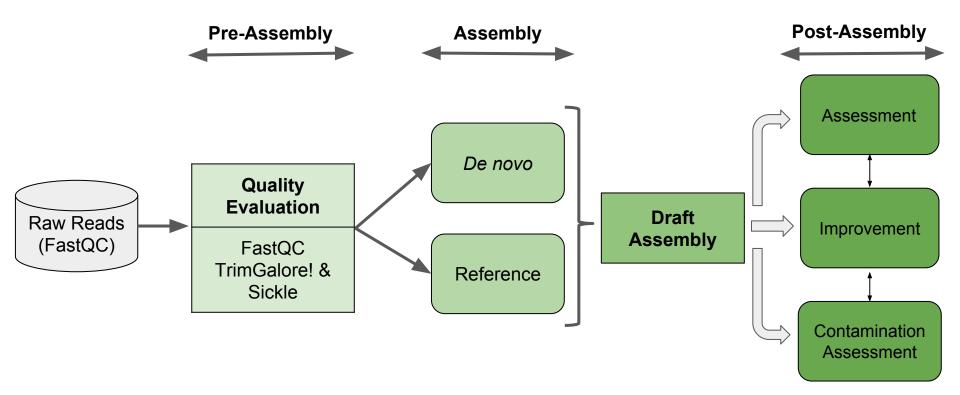
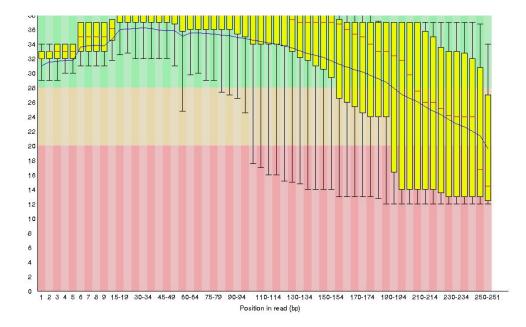
Genome Assembly Preliminary Results


Group II

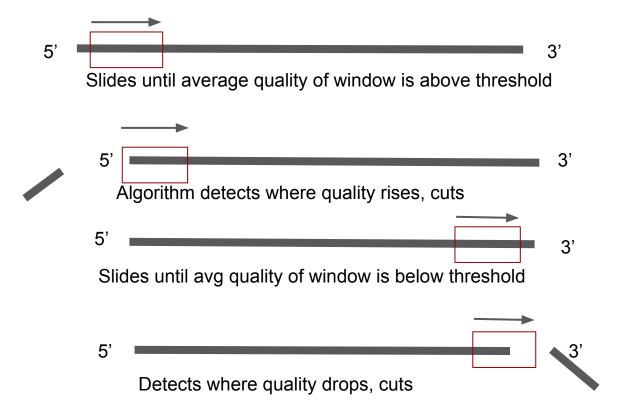
Tomáš Brůna, Harshini Chandrashekar, William Harvey, Jane Lew, Yusuph Mavura, Eunbi Park, Vishnu Raghuram, Beatriz Saldana, Parisa Yousefi Zowj


Outline

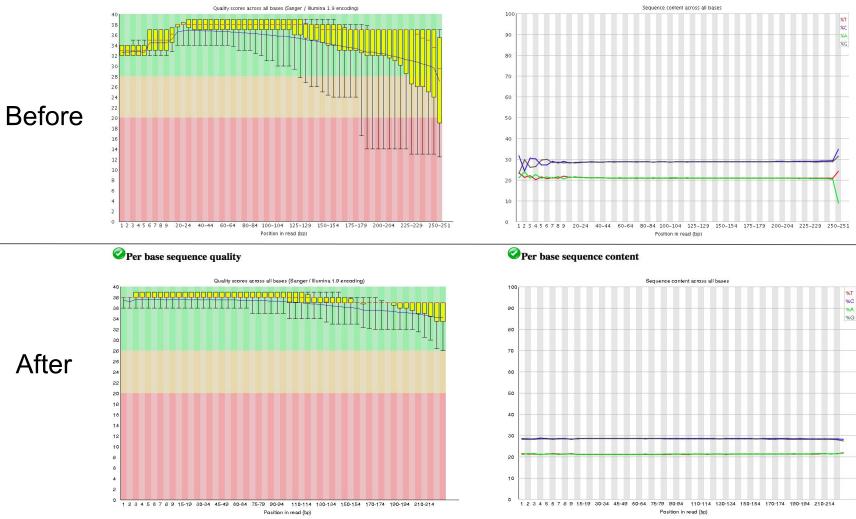
- Reminder of the task at hand
- Adapter trimming and quality control
- MultiQC
- Tool testing approach
- Reference Assembly
- De novo Assembly
- Scaffolding
- Next Steps

Introduction

Pre Assembly



Sickle


- A windowed adaptive trimming tool for FastQ files
- Window slides along read with quality and length thresholds to determine when quality is sufficiently low to trim the 3' and 5'-end of reads
- Discard reads based upon the quality and length threshold

Sickle's sliding window

Per base sequence quality

Per base sequence content

MultiQC

• MultiQC is a tool to create a single report with interactive plots for multiple bioinformatics analyses across many samples.

MultiQC: Results

FastQC: Mean Quality Scores

Reference Assembly

Reference Assembly

Problem:

• No information about species (cannot simply choose a *Klebsiella* species to use as reference genome)

Strategies:

- Test conservation between species (ANI + Mauve)
- Attempt to determine the species of each sample (StrainSeeker)
- Assemble samples using test reference genomes (Bowtie + SMALT)

Reference Assembly: Testing Conservation

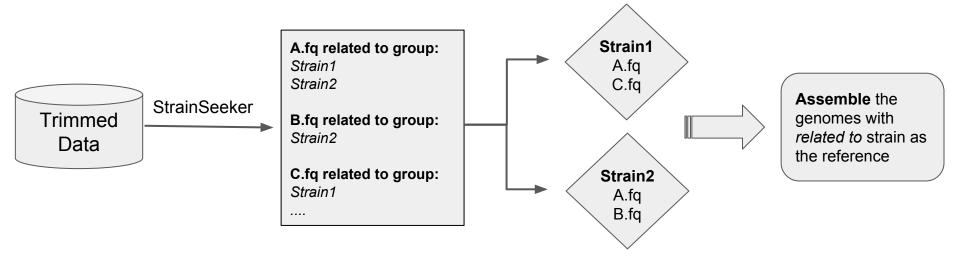
Test the level of conservation between different klebsiella species:

- selected the reference genomes for *K.aerogenes, K.oxytoca, K.pneumoniae, K. cf. planticola, K.quasipneumoniae, K.quasivariicola, K.variicola, K.sp. 2N3, K.sp. HMSC09D12*
- calculated the ANI percentages using OrthoANI tool
- whole genome alignment by Mauve

Pair-wise ANI: Results

K.aerogenes	100	78.45	83.07	83.1	84.76	84.38	84.67	84.96	84.72	82.71	
Klebsiella cf. planticola B43	78.45	100	78.68	78.55	78.88	78.83	78.6	78.58	78.74	78.37	
Klebsiella michiganensi	83.14	78.58	100	98.52	83.52	83.66	83.21	83.69	83.2	92.2	-
Klebsiella oxytoca	83.1	78.55	98.52	100	83.66	83.66	83.9	83.42	83.4	92.11	5
Klebsiella pneumoniae	84.76	78.85	83.52	83.66	100	93.5	93.88	94.47	99.08	83.41	
Klebsiella quasipneumoniae	84.38	78.83	83.66	84.05	93.5	100	92.83	93.21	93.68	83.7	-
Klebsiella_quasivariicola	84.67	78.6	83.38	83.9	93.88	92.83	100	93.88	93.98	83.51	-
Klebsiella_variicola	84.96	78.58	98.45	83.42	94.47	93.21	93.88	100	94.44	83.29	-
Klebsiella_sp2N3	84.72	78.74	83.49	83.4	99.08	93.68	93.98	94.44	100	83.13	-
Klebsiella_spHMSC09D12		78.37		92.11	83.41		83.51		83.13	100	-
Kaerogenes k.aerogenes planicola micriiganensi nichiganensi klebsiella ovytoca klebsiella ovytoca preumoniae ovytoca ovytoca preumoniae ovytoca ovytoc											

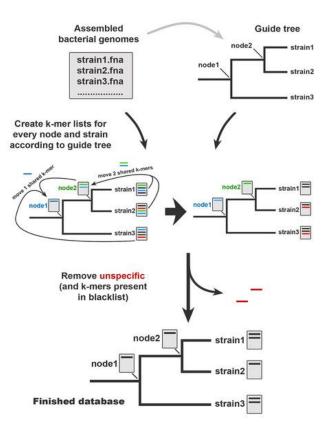
Reference Assembly: StrainSeeker


- Tool to classify/evaluate the species from each file after trimming
- Broad Goal:
 - Strains falling under same *related to* group can be binned together and reference assembly can be done

Welcome to *StrainSeeker*

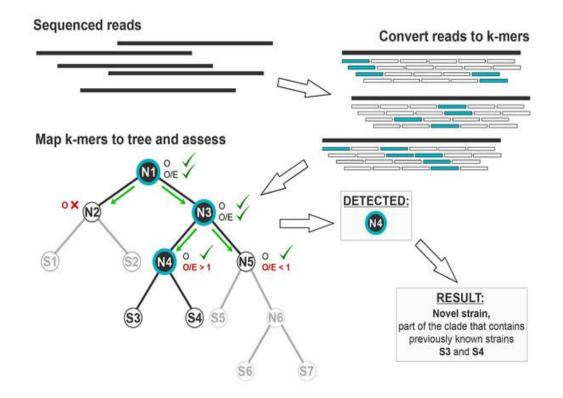
sequencing read analyzer for detecting bacterial strains

Reference Assembly: StrainSeeker



StrainSeeker groups unassembled reads under closely related species

Reference Assembly: StrainSeeker Methodology


- 1. Build a reference database
 - a. build guide tree of this database
 - b. assembled genome converted to k-mer list
 - c. Guide tree of k-mer list is created by moving shared k-mers to the root.
 - d. Cleaning up of database by removing non-specific k-mers
- 2. Strain Identification
 - a. Reads are converted to k-mers
 - b. Mapping to database tree

Reference Assembly: StrainSeeker (Building the Database)

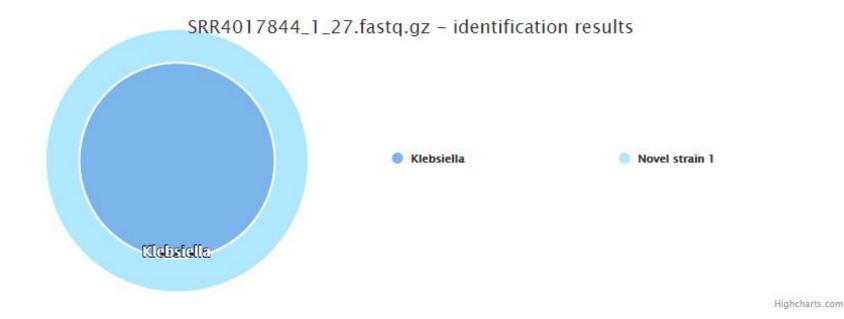
Roosaare M et al. StrainSeeker: fast identification of bacterial strains from raw sequencing reads using user-provided guide trees. PeerJ. 2017;5:e3353.

Reference Assembly: StrainSeeker (Strain Identification)

Roosaare M et al. StrainSeeker: fast identification of bacterial strains from raw sequencing reads using user-provided guide trees. PeerJ. 2017;5:e3353.

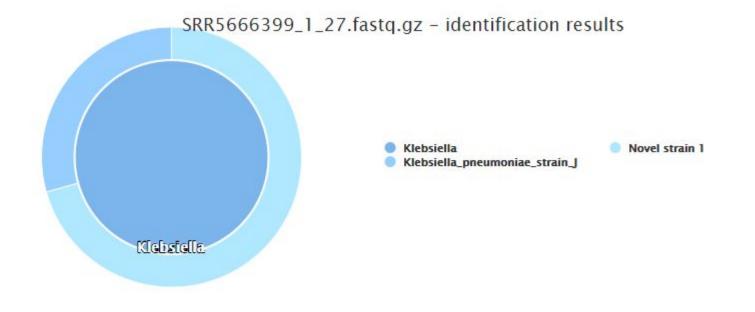
Reference Assembly: StrainSeeker Results

- 11 reference genomes of *Klebsiella* were used to build the database
- ran StrainSeeker for 10 selected files after trimming
- observed that K.pneumoniae and K. sp N13 appear most common in the *related to* group


Reference Assembly: StrainSeeker Issues

- Need to build a comprehensive database covering maximum *Klebsiella* reference genomes (we only used 10)
- Need to figure out the 0.000% in the results (read more about interpreting the results)

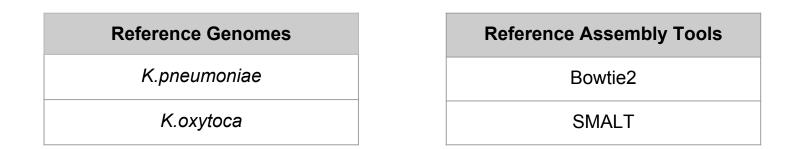
Sample:/projects/home/harshini6/reference_genomes/output/trimmed_reads_latest/SRR40 17846_1_27.fastq_run014_newtrimmed 0.00000% RELATED GCF_002850275.1_ASM285027v1_genomic,GCF_000240185.1_ASM2401 8v2_genomic


- StrainSeeker Web tool is not suitable for our number of files
 - Only takes in 5 input files at a time
 - Our results for 5 input read files:

http://bioinfo.ut.ee/strainseeker/index.php?r=site/results&id=66nrnjqc4a9fb22p1bia9i6km034387&additional=2a3a4a5a

LIST OF STRAINS DETECTED IN THE SAMPLE FILE SRR4017844_1_27.fastq.gz (Strains present in the database are with green background and novel strains with yellow background). <u>Download results</u>

Strain	Relative frequency in sample	Related to database strains (for novel strains)		
Novel strain 1 Look on tree	100.00%	Klebsiella_pneumoniae_subsp_pneumoniae_KPR0928 Klebsiella_pneumoniae_subsp_pneumoniae_strain_KPNIH30		


Highcharts.com

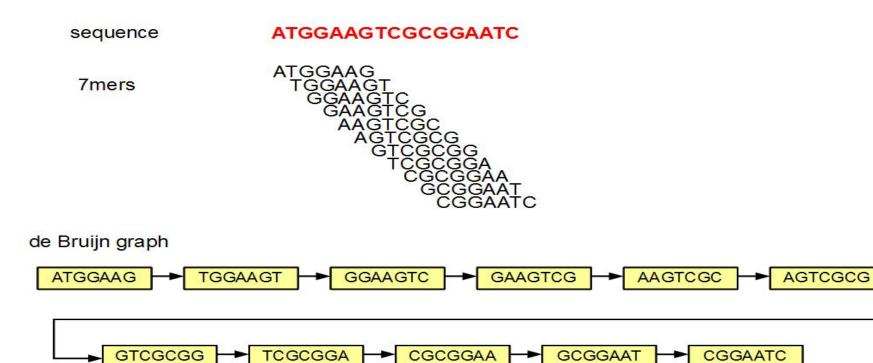
LIST OF STRAINS DETECTED IN THE SAMPLE FILE SRR5666399_1_27.fastq.gz (Strains present in the database are with green background and novel strains with yellow background). <u>Download results</u>

Strain	Relative frequency in sample	Related to database strains (for novel strains)
Novel strain 1 Look on tree	70.70%	Klebsiella_pneumoniae_strain_XH209
Klebsiella_pneumoniae_strain_J1 Look on tree	29.30%	

Reference Assembly: Assembly Tools

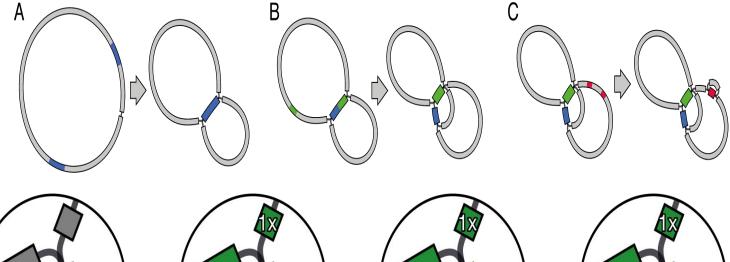
Perform reference assembly on a subset of trimmed data using different reference genomes and assembly tools

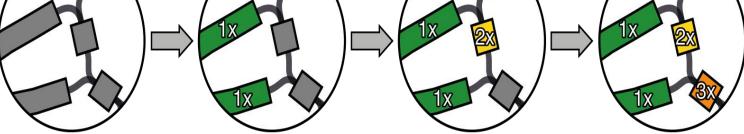
Chose the 10 largest read files for assembly


Reference Assembly: Results

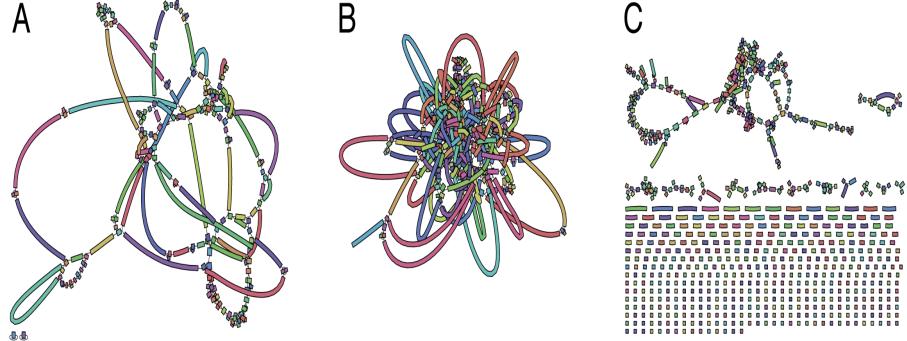
BOWTIE2	K.pneumoniae	K.oxytoca		
Time for 10 alignments	17 minutes	17 minutes		
Coverage	97%	No contig larger than 7%		

SMALT	K.pneumoniae	K.oxytoca		
Approx time for one alignment	17 minutes	26 minutes		
Coverage	97%	No contig larger than 58%		


De Novo Assembly

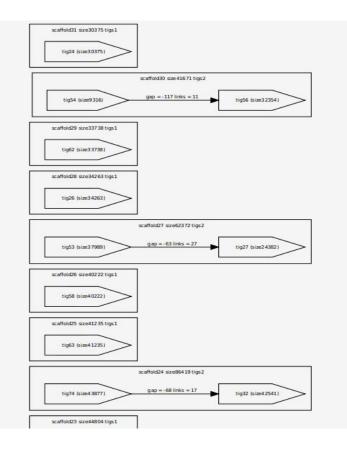

De bruijn graphs

Source: http://homolog.us/blogs/


De bruijn graphs - repeat regions

Source: https://github.com/rrwick/Unicycler

De bruijn graphs - whole genome

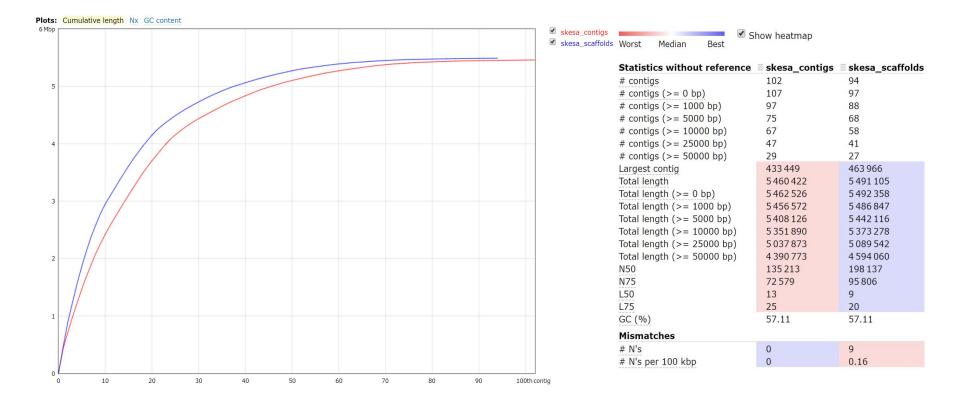


Source: https://github.com/rrwick/Unicycler

De Novo Assembly: Tools

- 1. SPAdes
- 2. MaSuRCA
- 3. Unicycler
- 4. Skesa

De Novo Assembly: Scaffolding

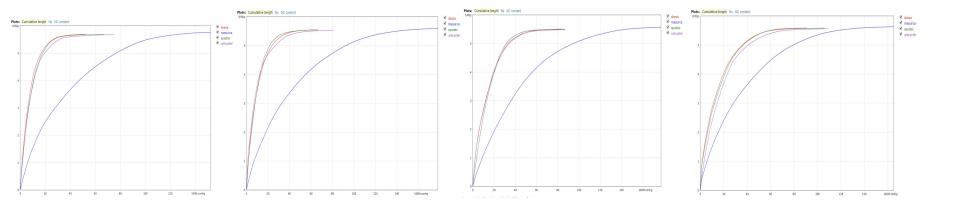

- A dotfile showing representation of a section of scaffolds in order
- In the case of contig extensions, the gap length is shown and the contigs are placed together

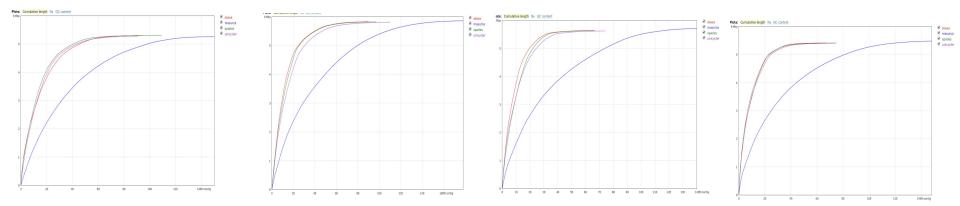
De Novo Assembly: Scaffolding Results

```
SUMMARY:
 Inserted contig file;
         Total number of contigs = 75
         Sum (bp) = 5542060
                 Total number of N's = 0
                 Sum (bp) no N's = 5542060
         GC Content = 57.24\%
         Max contig size = 491488
         Min contig size = 384
         Average contig size = 73894
         N25 = 312521
         N50 = 228481
         N75 = 114211
After scaffolding lib1:
         Total number of scaffolds = 68
         Sum (bp) = 5550620
                 Total number of N's = 7
                 Sum (bp) no N's = 5550613
         GC Content = 57.23\%
         Max scaffold size = 584968
         Min scaffold size = 426
         Average scaffold size = 81626
         N25 = 462585
         N50 = 254551
```

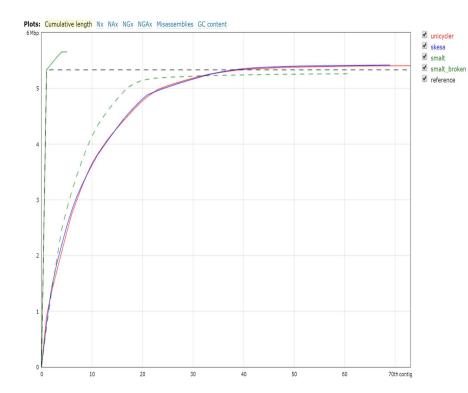
Used a minimum of 5 links (read pairs) between contigs to compute contigs

De Novo Assembly: Scaffolding Improvement



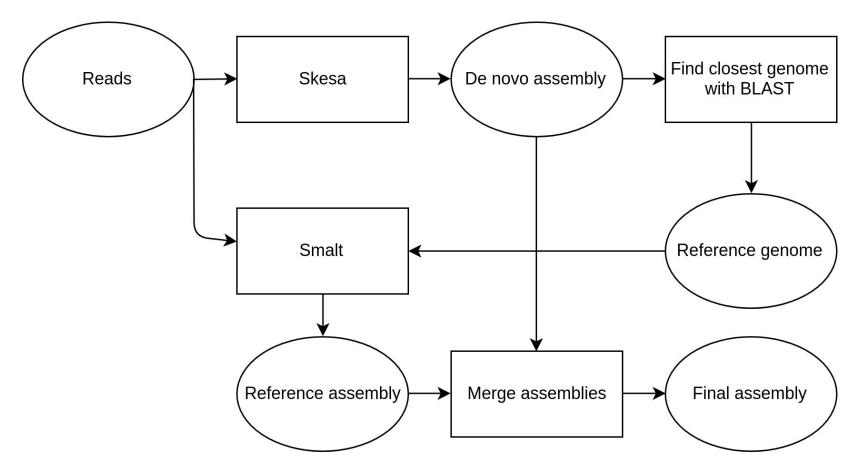

De Novo Assembly: Results

Plots: Cumulative length Nx GC content


Worst	Median	Best S	how heatmap			
		it reference	skesa	masurca	spades	unicycle
# conti		reference	94	180	96	103
	gs (>= 0 b	n)	97	181	371	131
	qs(>=00)	ALC: No.	88	172	85	93
	gs(>=100) gs(>=500)	. ,	68	142	65	66
The second second	gs(>= 500) gs(>= 100)		58	124	55	58
	gs(>= 100) gs(>= 250)		41	80	41	39
	qs(>= 200)		27	37	27	24
Largest		(dd bp)	463 966	155 660	463 053	433 070
Total lei			5 491 105	5 465 867	5 470 155	5 4 5 3 9 6 6
	ngth (>= 0	(hn)	5 492 358	5466189	5 536 623	5460707
	ngth (>= 1 ngth (>= 1		5 486 847	5460143	5 462 450	5 446 846
	ngth (>= 5		5 442 116	5 370 353	5415128	5 386 911
	ngth (>= 1 ngth (>= 1		5 373 278	5 240 550	5 343 506	5 332 319
			5 089 542	4 471 794	5 115 692	5 031 935
Total length (>= 25000 bp) Total length (>= 50000 bp)		4 594 060	2 930 175	4 628 198	4 489 662	
N50	ngun (>= 3	(du 0000 ph)	198 137	52 128	198 318	203 670
N75			95 806	32 072	99 4 2 9	95 563
L50			93808	32072	10	95 565
L75			20	67	20	19
*******				- 376.4		
GC (%)			57.11	57.18	57.11	57.12
Misma	tches					
# N's			9	0	360	0
# N's p	er 100 kbp		0.16	0	6.58	0

De Novo vs. Reference

*Klebsiella pneumoniae as reference



Worst Median Best

Show heatmap

Genome statistics	unicycler	skesa	smalt	smalt_broken			
Genome fraction (%)	96.216	96.268	97.642	97.475			
Duplication ratio	1.001	1.002	1.002	1.003			
Largest alignment	491012	418 172	5 208 051	713 858			
Total aligned length	5136242	5141215	5218219	5 215 772			
NGA50	184 661	188 211	5 208 051	359 422			
LGA50	10	10	1	5			
Misassemblies							
# misassemblies	26	29	0	0			
Misassembled contigs length	3 764 669	3 172 547	0	0			
Mismatches							
# mismatches per 100 kbp	84.96	85.16	85.27	83.92			
# indels per 100 kbp	6.39	6.23	0.06	0			
# N's per 100 kbp	0	0.11	6786.17	50.99			
Statistics without reference							
# contigs	73	69	5	61			
Largest contig	919 540	788 940	5 333 942	713858			
Total length	5408462	5418197	5657417	5 263 354			
Total length (>= 1000 bp)	5 403 498	5411608	5657417	5 255 793			
Total length (>= 10000 bp)	5 329 428	5 343 757	5 654 395	5 179 377			
Total length (>= 50000 bp)	4978985	4887324	5 654 395	5014141			

Next Steps: Combined Pipeline

Next Steps

- Gap filling the scaffolds, error checking and contamination assessment
- Test more data
- Make a pipeline for assembly
- Deliver quality scaffolds the gene prediction team

Questions?

