Functional Annotation

 $\bullet \bullet \bullet$

Preliminary Results

Team 2:

Siu Lung Ng, Prachiti Prabhu, Brian Merritt, Rong Jin, Xinyu Wang, Jacob Boswell, Jiani Long, Pooja Khurana, Yinquan Lu, Shrey Mathur

Introduction

- Objective
 - To functionally annotate 258 *Klebsiella* genomes
- Tools
 - Ab-initio
 - Homology based

Approach must be scalable!

Scalability

- Minimize number of searches/operations
 - Reduce query size
 - Reduce database size

- Our dataset is highly redundant

Clustering

Scalability by Clustering

Genes From Many Genomes ____

Clustered into Homologues

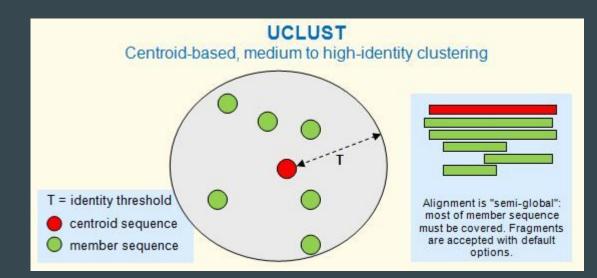
UCLUST Centroid-based, medium to high-identity clustering

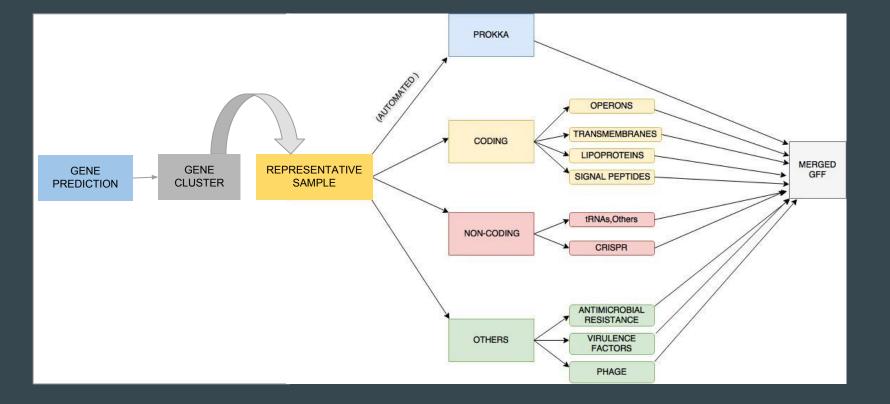
Functional Annotation of Homologue Clusters

Map Results Back to Genomes

Clustering

5 Reference Proteomes ~8Mb


After Clustering ~2.5Mb


(should not change too dramatically with additional genomes)

DB	Method	Seqs./	Sens (Err)	Sens (Err)	Sens (Err)
		sec.	all	Med.	Low
Pfam	ublast	55	97 (2)	96 (1)	75 (5)
	usearch	77	92 (3)	70 (3)	22 (8)
	blastp	0.16	99 (2)	96 (3)	98 (3)
Rfam	ublast	684	99.4 (0.6)	-	96 (4)
	usearch	671	99.3 (0.7)	-	93 (7)
	blastn	2.3	99.4 (0.6)	-	97 (3)
	mega-blast.	8.8	73 (0.2)	_	35 (0)

Clustering

Homology vs. ab-initio

PROKKA

Command: prokka --force --outdir </path/to/output/dir> --kingdom Bacteria --genus Klebsiella --gram neg --prefix <prefix name> --rfam --rnammer <query.fasta>

Summary output: organism: *Klebsiella* species strain contigs: 87 bases: 5,570,351 tmRNA: 1 (Aragorn also found 1 tmRNA) CDS: 5,282 misc_RNA: 129 tRNA: 77 sig_peptide: 500

Time: ~ 16 mins.

PROKKA

>Featur	re scaff	old1_siz	e427644	
48	284	CDS		
			EC_number	1
			gene yghA	
			inference	ab initio prediction:Prodigal:2.6
			inference	similar to AA sequence:UniProtKB:P0AG84
			locus tag	EJJAIGGM 00001
				ve oxidoreductase YghA
481	726	CDS		
			inference	ab initio prediction:Prodigal:2.6
			locus tag	EJJAIGGM 00002
			product hypoth	
1687	794	CDS	produce hypoth	cerear process
1007		000	gene dmlR 1	
			inference	ab initio prediction:Prodigal:2.6
			inference	similar to AA sequence:UniProtKB:P76250
			locus tag	EJJAIGGM 00003
				pe transcriptional regulator DmlR
1801	2652	CDS	produce min-cy	pe transcriptional regulator billin
1001	2052	CDS	inference	ab initio prediction:Prodigal:2.6
			locus tag	EJJAIGGM 00004
				etical protein
1801	1860	sig pe		etitai protein
1901	1000	sig_be	inference	ab initio prediction:SignalP:4.1
				ted cleavage at residue 20
				ve signal peptide
2830	2970	CDS	product putati	ve signai peptide
2000	2970	CD3		
			gene sra inference	ab initio prediction:Prodigal:2.6
			inference	similar to AA sequence:UniProtKB:P68191
				EJJAIGGM 00005
			locus_tag	
2452	4849	CDS	product Statio	nary-phase-induced ribosome-associated protein
3152	4849	CDS		1 1 1 20
			EC_number	1.1.1.38
			gene maeA	
			inference	ab initio prediction:Prodigal:2.6
			inference	similar to AA sequence:UniProtKB:P26616
			locus_tag	EJJAIGGM_00006
5030			product NAD-de	pendent malic enzyme
5030	5737	CDS		
			inference	ab initio prediction:Prodigal:2.6
			locus_tag	EJJAIGGM_00007
			product hypoth	etical protein
6134	7849	CDS		
			gene yheS_1	
			inference	ab initio prediction:Prodigal:2.6
			inference	similar to AA sequence:UniProtKB:P63389
			locus_tag	EJJAIGGM_00008

product putative	ABC	transporter	ATP-binding	protein	Ył

locus_tag	ftype	gene	EC_number	product
EJJAIGGM_00001	CDS	yghA	1	putative oxidoreductase YghA
EJJAIGGM_00002	CDS			hypothetical protein
EJJAIGGM_00003	CDS	dmlR_1		HTH-type transcriptional regulator DmIR
EJJAIGGM_00004	CDS			hypothetical protein
	sig_peptide			putative signal peptide
EJJAIGGM_00005	CDS	sra		Stationary-phase-induced ribosome-associated protein
EJJAIGGM_00006	CDS	maeA	1.1.1.38	NAD-dependent malic enzyme
EJJAIGGM_00007	CDS			hypothetical protein
EJJAIGGM_00008	CDS	yheS_1		putative ABC transporter ATP-binding protein YheS
EJJAIGGM_00009	CDS			hypothetical protein
EJJAIGGM_00010	CDS	ppa_1	3.6.1.1	Inorganic pyrophosphatase
	sig_peptide			putative signal peptide
EJJAIGGM_00011	CDS	adhP	1.1.1.1	Alcohol dehydrogenase, propanol-preferring
EJJAIGGM_00012	CDS	gsiB_1		Glutathione-binding protein GsiB
	sig_peptide			putative signal peptide
EJJAIGGM_00013	CDS	gsiC_1		Glutathione transport system permease protein GsiC
EJJAIGGM_00014	CDS	ddpC_1		putative D,D-dipeptide transport system permease protein DdpC
EJJAIGGM_00015	CDS	gsiA_1	3.6.3	Glutathione import ATP-binding protein GsiA
EJJAIGGM_00016	CDS	luxA	1.14.14.3	Alkanal monooxygenase alpha chain
EJJAIGGM_00017	CDS			hypothetical protein
EJJAIGGM_00018	CDS	ydhP_1		Inner membrane transport protein YdhP
EJJAIGGM_00019	CDS			hypothetical protein
EJJAIGGM_00020	CDS			hypothetical protein
EJJAIGGM_00021	CDS	fdnl		Formate dehydrogenase, nitrate-inducible, cytochrome b556(Fdn) subunit
EJJAIGGM_00022	CDS	fdnH		Formate dehydrogenase, nitrate-inducible, iron-sulfur subunit
EJJAIGGM_00023	CDS	fdnG_1	1.1.5.6	Formate dehydrogenase, nitrate-inducible, major subunit
EJJAIGGM_00024	misc_RNA			SECIS_3

PROKKA output in the .gff format (left) and .tsv (right).

SPECIFIC TOOLS

 $\bullet \bullet \bullet$

Specific Tools (Based on features to be annotated)

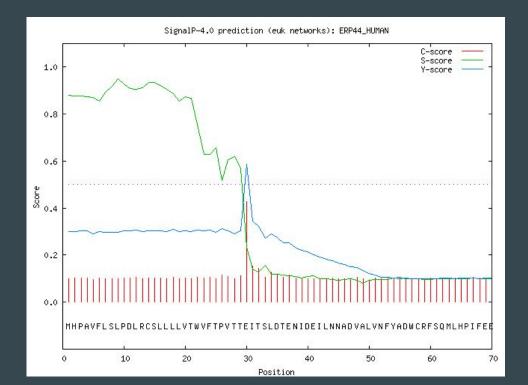
- Protein-coding regions
 - Signaling peptides
 - Transmembrane regions
 - Lipoproteins
 - Operons
 - Pathways
- Non-coding RNA
 - \circ rRNA, tRNA and sRNA
 - CRISPR

- Others:
 - Antibiotic resistance
 - Virulence factors
 - Prophage genes

Specific Tools (Based on features to be annotated)

- Protein-coding regions
 - Signaling peptides
 - Transmembrane regions
 - Lipoproteins
 - Operons
 - Pathways

Non-coding RNA


- o rRNA, tRNA and sRNA
- CRISPR

Others:

- Antibiotic resistance
- Pathway
- Prophage genes
- Virulence factors

Signal Peptides Prediction - SignalP 4.1

- Command to run
 - ./signalp -t gram- [-f short/long/all/summary] input_file.faa > output_file.out

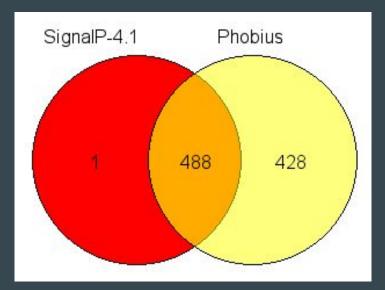
Signal Peptide Prediction - SignalP 4.1

Sample Output File(Short/Summary)

# SignalP-4.1 gram- predic	tions									
# name	Cmax	pos	Ymax	pos	Smax	pos	Smean		Dmaxcut	Networks-used
NC 017540.1 1	0.107	37	0.113	16	0.151		0.126	0.119 N	0.570	SignalP-noTM
NC 017540.1 2	0.108	23	0.131	31	0.242	27	0.137	0.134 N	0.570	SignalP-noTM
NC 017540.1 3	0.131	44	0.117	44	0.117	42	0.092	0.105 N	0.570	SignalP-noTM
NC 017540.1 4	0.123	35	0.123	35	0.133	26	0.107	0.115 N	0.570	SignalP-noTM
NC 017540.1 5	0.116	20	0.124	20	0.189	13	0.122	0.123 N	0.570	SignalP-noTM
NC_017540.1_6	0.142	48	0.139	11	0.263		0.196	0.166 N	0.570	SignalP-noTM
NC_017540.1_7	0.106	30	0.111	11	0.200		0.122	0.116 N	0.570	SignalP-noTM
NC_017540.1_8	0.130	24	0.185	11	0.455		0.349	0.246 N	0.510	SignalP-TM
NC_017540.1_9	0.114	21	0.138	11	0.279		0.178	0.157 N	0.570	SignalP-noTM
NC_017540.1_10	0.140	48	0.143	11	0.318		0.202	0.171 N	0.570	SignalP-noTM
NC_017540.1_11	0.156	24	0.153	24	0.241		0.167	0.160 N	0.570	SignalP-noTM
NC_017540.1_12	0.151	26	0.164	26	0.232	20	0.161	0.163 N	0.510	SignalP-TM
NC_017540.1_13	0.223	28	0.157	28	0.164	48	0.108	0.134 N	0.570	SignalP-noTM
NC_017540.1_14	0.201	41	0.194	16	0.483	13	0.359	0.272 N	0.570	SignalP-noTM
NC_017540.1_15	0.171	25	0.176	25	0.277		0.200	0.187 N	0.570	SignalP-noTM
NC_017540.1_16	0.135	30	0.126	30	0.191	29	0.095	0.111 N	0.570	SignalP-noTM
NC_017540.1_17	0.108	25	0.109	13	0.146		0.121	0.114 N	0.570	SignalP-noTM
NC_017540.1_18	0.129	38	0.117	16	0.165	12	0.133	0.124 N	0.570	SignalP-noTM
NC_017540.1_19	0.182	21	0.247	21	0.432	20	0.317	0.273 N	0.510	SignalP-TM
NC_017540.1_20	0.155	53	0.137	53	0.227	14	0.113	0.128 N	0.510	SignalP-TM
NC_017540.1_21	0.103	33	0.101	70	0.151		0.085	0.093 N	0.570	SignalP-noTM
NC_017540.1_22	0.148	27	0.136	27	0.151	26	0.117	0.127 N	0.570	SignalP-noTM
NC_017540.1_23	0.110	18	0.095	68	0.094	59	0.076	0.086 N	0.570	SignalP-noTM
NC_017540.1_24	0.114	19	0.134	19	0.193		0.156	0.144 N	0.570	SignalP-noTM
NC_017540.1_25	0.210	29	0.163	29	0.388		0.153	0.159 N	0.510	SignalP-TM
NC_017540.1_26	0.182	35	0.195	11	0.457		0.399	0.271 N	0.510	SignalP-TM
NC_017540.1_27	0.209	37	0.239	37	0.449	28	0.230	0.234 N	0.570	SignalP-noTM
NC_017540.1_28	0.109	44	0.147	16	0.283		0.209	0.169 N	0.510	SignalP-TM
NC_017540.1_29	0.128	37	0.152	11	0.305		0.247	0.187 N	0.510	SignalP-TM
NC_017540.1_30	0.187	65	0.110	15	0.166		0.121	0.114 N	0.510	SignalP-TM
NC_017540.1_31	0.712	27	0.771	27	0.959	11	0.877	0.821 Y	0.570	SignalP-noTM
NC_017540.1_32	0.109	15	0.105	59	0.140		0.097	0.101 N	0.570	SignalP-noTM
NC_017540.1_33	0.769	26	0.793	26	0.975	11	0.882	0.835 Y	0.570	SignalP-noTM
NC_017540.1_34	0.540	27	0.704	27	0.990	14	0.945	0.817 Y	0.570	SignalP-noTM
NC 017540.1 35	0.120	27	0.228	17	0.631	25	0.461	0.337 N	0.570	SignalP-noTM

• Sample Results

- Input Reference
 Genome: 5075 sequences
- #Predicted Signal
 Peptides: 489
- Time taken for
 execution: ~4 minutes


Signal Peptide Prediction - Phobius

- Input Format: FASTA file
- Sample Results
 - Input Reference Genome:
 5075 sequences
 - #Predicted Signal Peptides:916
 - Time taken for execution: ~13 minutes

Phobius prediction

STOFNES TO	TM SP PREDICTION
SEQENCE ID	0 0 i
NC_017540.1_1	
NC_017540.1_2	0 0 i
NC_017540.1_3	0 0 i
NC_017540.1_4	0 0 i
NC_017540.1_5	0 0 i
NC_017540.1_6	0 0 i
NC_017540.1_7	0 0 i
NC_017540.1_8	8 Y n2-13c17/18o45-64i76-98o104-121i133-151o171-194i206-226o238-262i274-295o
NC_017540.1_9	0 0 i
NC_017540.1_10	0 0 i
NC_017540.1_11	4 0 o122-146i186-206o226-247i254-273o
NC_017540.1_12	6 0 o6-24i74-92o98-120i141-162o177-197i209-239o
NC_017540.1_13	0 0 i
NC 017540.1 14	0 0 i
NC 017540.1 15	0 0 i
NC 017540.1 16	0 0 i
NC 017540.1 17	0 0 i
NC_017540.1_18	0 0 i
NC 017540.1 19	7 Y n8-16c20/21o30-51i63-86o92-112i119-141o153-175i187-206o212-236i
NC 017540.1 20	0 0 i
NC 017540.1 21	0 0 i
NC 017540.1 22	0 0 i
NC 017540.1 23	0 0 i
NC 017540.1 24	0 0 i
NC_017540.1_25	3 0 o6-28i40-61o73-102i
NC 017540.1 26	6 Ø i12-36056-79i127-1550161-176i183-2010207-224i
NC 017540.1 27	1 0 1310-3310
NC 017540.1 28	4 0 i12-35055-74i86-1030109-128i
NC 017540.1 29	6 0 112-39084-1101122-1430163-1811202-2270258-2811
NC 017540.1 30	8 Ø i15-34040-58i67-910277-303i315-3400371-392i413-4360484-506i
NC 017540.1 31	0 Y n9-17c26/27o

Signal Peptide Prediction - SignalP 4.1 vs Phobius

	All Sequ	ences	Only TM	No TM	
Method	SP corr.	CS sens. (%)	CS prec. (%)	FP-rate (%)	SP corr.
SignalP 4.0	0.848	65.4	70.8	1.5	0.882
SignalP-TM	0.815	61.5	75.3	1.1	0.839
SignalP-noTM	0.497	71.2	26.1	35.8	0.948
SignalP 3.0 NN	0.542	74.0	30.8	28.5	0.925
SignalP 3.0 HMM	0.477	76.9	26.1	39.2	0.931
PrediSi	0.479	75.0	27.2	35.6	0.901
SPEPlip	0.429	70.2	21.4	45.1	0.891
Signal-CF*	0.288	73.1	13.8	78.1	0.698
Signal-3L*	0.287	73.1	13.5	81.1	0.714
SignalBlast SP1	0.530	39.4	14.6	25.4	0.767
SignalBlast SP2	0.252	18.3	3.2	72.8	0.543
SignalBlast SP3	0.642	34.6	22.8	11.5	0.836
SignalBlast SP4	0.387	39.4	9.4	46.1	0.635
Phobius	0.586	73.1	33.6	23.3	0.920
Philius	0.639	76.9	26.1	15.7	0.872
MEMSAT3	0.084	0.0	0.0	17.8	0.312
MEMSAT-SVM	0.497	1.0	0.6	16.4	0.780
SPOCTOPUS	0.510	33.7	18.6	20.5	0.848

Table E. Benchmarking of signal peptide and cleavage site predictions on the comparison dataset for all three organism groups. 'SP corr.' denotes signal peptide correlation, while 'CS sens.' denotes cleavage site sensitivity (the percentage of actual cleavage sites that are predicted correctly) and 'CS prec.' denotes cleavage site precision (the percentage of predicted cleavage sites that are correctly) redicted as a signal peptide. 'No TM' denotes the test where there were no transmembrane sequences in the data, *i.e.* only the first negative bacterial sequences, since SignalP 4.0 does not use the combination scheme for this organism group. The methods indicated with a star (*) can only make predictions for sequences longer than 50 aa. For those methods the evaluation sets were reduced by 4, 2, and 22 sequences for the Eukaryote, Gram-positive and Gram-negative sets, respectively.

LipoP

Prediction of lipoproteins in Gram-negative bacteria.

Based on hidden Markov model

Command: perl LipoP -short <Input FASTA>

Example Results:

```
# scaffold1|size403193 SpI score=17.1976 margin=10.92408 cleavage=27-28
# scaffold2|size340902 SpI score=15.5525 margin=10.21524 cleavage=29-30
# scaffold3|size331074 SpI score=14.7302 margin=13.02795 cleavage=20-21
# scaffold4|size324596 SpI score=4.27174 margin=1.47737 cleavage=28-29
# scaffold5|size295481 SpI score=15.5545 margin=15.755413 cleavage=18-19
# scaffold6|size272962 SpI score=10.8871 margin=9.66931 cleavage=36-37
# scaffold7|size271798 SpI score=17.5344 margin=14.94773 cleavage=25-26
# scaffold8|size261158 SpI score=14.3406 margin=13.936765 cleavage=19-20
# scaffold9|size237569 SpI score=7.65902 margin=4.87739 cleavage=32-33
# scaffold10|size219630 SpI score=16.9006 margin=15.69714 cleavage=24-25
# scaffold11|size204495 SpI score=9.4103 margin=9.186328 cleavage=22-23
# scaffold12 size176635 SpI score=9.32899 margin=5.26222 cleavage=33-34
# scaffold13|size161491 SpI score=12.4825 margin=7.37331 cleavage=27-28
# scaffold14 |size149520 SpI score=15.2614 margin=13.89573 cleavage=27-28
# scaffold15 size262683 SpI score=9.81478 margin=9.504438 cleavage=20-21
# scaffold16|size135172 SpI score=6.9 margin=7.100913 cleavage=18-19
# scaffold17 | size129360 SpI score=16.0197 margin=16.220613 cleavage=20-21
# scaffold18 size108795 SpI score=16.2098 margin=14.03159 cleavage=21-22
```

NC_016845.1 SpI score=17.1009 margin=11.05799 cleavage=31-32
NC_016838.1 SpI score=9.14976 margin=9.350673 cleavage=19-20
NC_016846.1 SpI score=15.1474 margin=15.348313 cleavage=19-20
NC_016839.1 SpI score=16.6144 margin=6.4663 cleavage=23-24
NC_016840.1 SpI score=9.06892 margin=7.76956 cleavage=26-27
NC_016847.1 SpI score=24.2514 margin=14.85952 cleavage=28-29
NC_016841.1 SpI score=13.4394 margin=8.35687 cleavage=25-26

LipoP

Running time: run command "time perl LipoP -short <Input FASTA>"

	d107 size478		
<pre># scaffol</pre>	d108 size426	SpI	SCOI
<pre># scaffol</pre>	d109 size415	SpI	scoi
Running f	or 1 seconds		
real 0	m0.529s		
user 0	m0.606s		
sys 0	m0.034s		

NC_016847.1 SpI score= # NC_016841.1 SpI score= Running for 0 seconds real 0m0.267s user 0m0.258s sys 0m0.040s

File Size: 5.6 MB (assembled) ; 5.5 MB (reference) Contains 5,745,742 bases (assembled), 5,682,322 bases (reference)

LipoP

LipoP is also used for Transmembrane regions.

Input Reference Genome: 5541 sequences

Predicted Transmembrane : 867

Much faster than other tools, like Phobius(~15min)

NC 011283.1 12 TMH score=6.80174 margin=7.002653 # NC 011283.1 14 TMH score=12.1204 margin=12.321313 # NC 011283.1 16 TMH score=1.43192 margin=1.632833 # NC_011283.1_17 TMH score=5.86663 margin=6.067543 # NC_011283.1_20 TMH score=10.2266 margin=10.427513 # NC 011283.1 30 TMH score=12.1182 margin=12.319113 # NC_011283.1_32 TMH score=0.66513 margin=0.866043 # NC_011283.1_36 TMH score=10.7816 margin=10.982513 # NC_011283.1_42 TMH score=8.20291 margin=8.403823 # NC_011283.1_50 TMH score=7.75446 margin=7.955373 # NC_011283.1_53 TMH score=9.67056 margin=9.871473 # NC_011283.1_55 TMH score=8.52701 margin=4.98544 # NC_011283.1_59 TMH score=4.70729 margin=4.6789318 # NC_011283.1_66 TMH score=4.63746 margin=4.838373 # NC_011283.1_75 TMH score=2.19019 margin=2.391103 # NC 011283.1 79 TMH score=7.87516 margin=8.076073 # NC_011283.1_80 TMH score=14.699 margin=7.29236 # NC_011283.1_84 TMH score=9.59383 margin=9.794743 # NC_011283.1_88 TMH score=16.9619 margin=17.162813 # NC_011283.1_91 TMH score=5.65457 margin=5.855483 # NC 011283.1 101 TMH score=7.95103 margin=3.53982 # NC 011283.1 126 TMH score=4.43705 margin=4.637963 # NC 011283.1 145 TMH score=10.0948 margin=10.295713 # NC_011283.1_150 TMH score=11.9934 margin=12.194313 # NC_011283.1_151 TMH score=12.6783 margin=12.879213 # NC 011283.1 152 TMH score=-0.115433 margin=0.08548 # NC_011283.1_160 TMH score=14.6227 margin=14.823613 # NC_011283.1_170 TMH score=4.24254 margin=4.443453 # NC_011283.1_175 TMH score=6.46243 margin=6.663343 # NC_011283.1_176 TMH score=7.221 margin=7.421913

Download operon tables for Klebsiella pneumoniae

Eutil fasta files based on GI numbers in the operon table

Makeblastdb and and blastp queries

Filter and Match hits back to the operon table

Download operon tables

Total 6321 Operons, 31991 Genes

OperonID	GI	Synonym	Start	End	Strand	Length	COG	Product
1263312	386032584	N2242_000	5238	7022	+	594	12	bifunctional isocitrate dehydrogenase kinase/phosphatase protein
1263312	386032583	V2242_00(3831	5135	+	434	-	isocitrate lyase
1263312	386032582	V2242_000	2150	3751	+	533	2	malate synthase
1263313	386032595	V2242_000	19223	20170	-	315	# 1	DeoR family transcriptional regulator
1263313	386032594	N2242_000	18349	19152		267		sorbitol-6-phosphate 2-dehydrogenase
1263313	386032593	N2242_000	17932	18339	<u>1</u> 20	135	14	PTS system mannose/fructose/sorbose family transporter subunit IIA
1263313	386032592	N2242_000	17438	17932	-	164	÷1	PTS system mannose/fructose/sorbose family transporter subunit IIB
1263313	386032591	V2242_000	16572	17372	-	266		PTS system mannose-specific transporter subunit IIC
1263313	386032590	V2242_000	15736	16560	-	274	21	PTS system mannose/fructose/sorbose family transporter subunit IID
1263313	386032589	V2242_000	14431	15663	-	410	-	hypothetical protein
1263313	386032588	N2242_000	13629	14438	-	269	- <u>-</u>	shikimate 5-dehydrogenase

✤ Fetch fasta files based on GI numbers

wget -nv -O operon.table "<u>https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=nuccore&id=386032584&rettype=fa</u> <u>sta&retmode=text</u>"

✤ Makeblastdb

makeblastdb -in operon.table -dbtype prot

Blastp, filter and match hits back to table

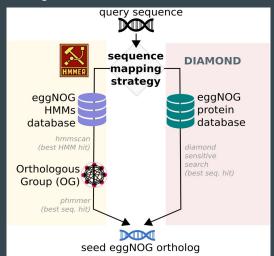
blastp -db operon.table -query SRR3982229.gff.fasta -num_threads 4 -evalue 1e-10 -outfmt "6 stitle qseqid sseqid qcovs pident evalue" > SRR3982229

(~7 minutes per sample)

stitle	qseqid	sseqid	qcovs	pident	evalue
YP_002238633.1 YgbK domain protein [Klebsiella pneumoniae 342]	scaffold84 size540_1	YP_002238633.1	100	100	2.12E-19
YP_002238613.1 YgbK domain protein [Klebsiella pneumoniae 342]	scaffold84 size540_1	YP_002238613.1	100	100	2.12E-19
YP_001335265.1 hypothetical protein KPN_01604 [Klebsiella pneumoniae subsp. pneumoniae N	1 scaffold84 size540_1	YP_001335265.1	100	100	2.30E-19
YP_005226819.1 ygbK domain protein [Klebsiella pneumoniae subsp. pneumoniae HS11286]	scaffold84 size540_1	YP_005226819.1	100	100	2.32E-19
YP_006636427.1 hypothetical protein A79E_2632 [Klebsiella pneumoniae subsp. pneumoniae 1	0 scaffold84 size540_1	YP_006636427.1	100	100	2.34E-19
YP_005954636.1 ygbK domain protein [Klebsiella pneumoniae KCTC 2242]	scaffold84 size540_1	YP_005954636.1	100	100	2.34E-19
YP_005957005.1 IS150 putative transposase [Klebsiella pneumoniae KCTC 2242]	scaffold83 size624_1	YP_005957005.1	99	99.507	2.15E-152
YP_005955660.1 IS150 putative transposase [Klebsiella pneumoniae KCTC 2242]	scaffold83 size624_1	YP_005955660.1	99	99.507	2.15E-152

InterProScan 5 & eggNOG-mapper commands

./interproscan.sh -goterms -iprlookup -pa -o [output.gff] -i [input_File.fasta] -f GFF3


- Can also output TSV, XML, HTML, & JSON
- Specify GO & pathway with -goterms & -pa, respectively

python emapper.py -m hmm -i [input_file.fasta] --output [output_file] -d [database] --usemem

- Precomputed HMM models
- --usemem loads database into memory.
 - Entire bact database is ~32GB.
 - For our server, you will need to read entirely from disk or limit database by taxon

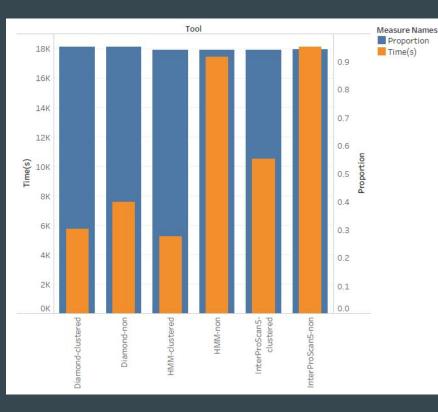
python emapper.py -m diamond -i [input_file.fasta] --output [output_file]

- Tailored for large sequence counts
- Does not scale linearly (slower for small amount of sequences)
- Efficient BLAST alternative

Example Outputs

InterProScan 5

##sequence-region NC_009648.1_183 1 283
NC_009648.1_183 . polypeptide 1 283 . + . ID=NC_009648.1_183;md5=a11e9c0f044231728a6c922d0ae9d725
NC_009648.1_183 SUPERFAMILY protein_match 4 54 2.24E-18 + . date=12-03-2018;Target=NC_009648.1_183 4 54;Ontology_term="G0:0005515";ID=match514_4_54;Name=SSF46934;status=T;Dpxref="InterPro:IPR009060"
NC_009648.1_183 [Fism protein match 71 263 1.5E-65 + . date=12-03-2018; Target=NC_009648.1_183 71 263; Ontology_term="G0:0003746", "G0:0006414"; ID=match615_71_263; signature_desc=Plongation factor TS: Name=PF00889; status=T: Dbxref="InterPro: IFR014039", "Reactome: R-HSA-5398840"
NC_009648.1_183 Gene3D protein_match 1 56 2.6E-27 + . date=12-03-2018;Target=NC_009648.1_183 1 56;ID=match516 1 56;Name=G3DSA:1.10.8.10;status=T
NC_009648.1_183 IIGRFAM protein_match 1 282 7.2E-121 + . date=12-03-2018;Target=NC_009648.1_183 1 282 ontology_term="G0:0003746","G0:0005622","G0:0005424"/ID=matchs17_1 282; signature desc=tsf: translation elongation factor IsjName=TIGR00116;status=T;Dbxref="InterPro:IPR00186","Reactome:R-HSA-5389840"
NC_009648.1_183 SUPERFAMILY protein_match 142 281 4.77E-53 + . date=12-03-2018;Target=NC_009648.1_183 142 281;TD=match?18_142_281;Name=55F54713;status=7;Dbxref="InterPro:IFR036402","Reactome:R-HSA-5389840"
NC_009648.1_183 Hamap protein_match 1 280 79.238 + . date=12-03-2018;Target=NC_009648.1_183 1 280;Ontology_term="G0:0003746","G0:0005622","G0:0005414";ID=match\$19_1_280;signature_desc=Elongation factor Ts [tsf].;Name=NF_00050;status=T;ENoref="InterPro:IFR001816","Reactome:R-HSA-5389840"
NC_009648.1_183 Gene3D protein_match 187 226 9.7E-25 + . date=12-03-2018;Target=NC_009648.1_183 187 226;ID=match;20_187_226;Name=G3DSA:1.10.286.20;status=T
NC_009648.1_183 FANTHER protein_match 2 280 1.7E-92 + . date=12-03-2018;Target=NC_009648.1_183 2 280;Ontology_term="G0:0003746","G0:0005622","G0:0005414";ID=match\$21_2_280;Name=FTHR11741;status=T;IDxref="InterPro:IFR001816","Reactome:R-HSA-5389840"
NC_009648.1_183 ProSitePatterns protein_match 12 27 . + . date=12-03-2018;Target=NC_009648.1_183 12 27;Ontology_term="G0:0003746", "G0:0005622", "G0:0005614";ID=match422_12_27;signature_desc=Elongation factor Is signature 1.;Name=PS01126;status=T;Dbxref="InterPro:IER018101", "Reactome:R-HSA-5389840"
NC_009648.1_183 Gene3D protein_match 57 141 1.8E-32 + . date=12-03-2018;Target=NC_009648.1_183 57 141;ID=match423_57_141;Name=G3D5A:3.30.479.20;status=T;IDxref="InterPro:IPR036402", "Reactome:R-HSA-5389840"
NC_009648.1_183 ProSitePatterns protein_match 75 85 . + . date=12-03-2018;Target=NC_009648.1_183 75 85;Ontology_term="G0:0003746","G0:0005622","G0:00056414";ID=match424_75_85;signature_desc=Elongation factor Is signature 2.;Name=PS01127;status=T;Dbxref="InterPro:IER018101","Reactome:R-HSA-5389840"
NC_009648.1_183 CDD protein_match 7 43 7.43833E-17 + . date=12-03-2018;Target=NC_009648.1_183 7 43;ID=match225_7_43;signature_desc=UBA_EF-Ts;Name=cd14275;status=T
NC_009648.1_183 SUPERFAMILY protein_match 56 139 2.62E-20 + . date=12-03-2018;Target=WC_009648.1_183 56 139;Ib=match#26_56_139;Name=SSF54713;status=T;IDxref="InterPro:IPR036402","Reactome:R-HSA-5389840"


Databases of Note: SMART, TIGRFAM, Pfam, SUPERFAMILY, PANTHER, CATH-Gene3D Annotations can be redundant, increasing computation time

eggNOG-mapper

#query_name	seed_eggNOG_o	rtholog	seed_orth	og_evalue seed_ortholog_score predicted_gene_name 60_terms KEGG_KOS BiGG_reactions Annotation_	tax_scope OGs bestOG evalue score COG cat eggNOG annot
				K03831 bactNOG[38] 08RIR@bactNOG,0QJX5@gproNOG,165D8@proNOG,COG0521@NOG 0QJX5[6.60026801982e-107]355.710723877 H molybdenum cofactor	
				K03762,K15977 CRNDt2rpp,CRNt2rpp,CIBTt2rpp,PROt2rpp bactNOG[38] 05CSH@bactNOG,0QJ4K@gproNOG,0XP7I@NOG,16QT5@proNOG 0QJ4K 1.51674290038	
NC_009648.1_10	272620.KPN_00011	6.le-122	397.4 YAAH	30:0005575,G0:0005623,G0:0005886,G0:0016020,G0:0044464,G0:0071944 K07034 bactNOG[38] 06HK8@bactNOG,0QKQE@gproNOG,16TE7@proNOG,COG1584@NO	G 0QKQE 2.63275495845e-95 318.506561279 S GPR1 FUN34 yaaH family protein
NC_009648.1_11	272620.KPN_00012	2.4e-170	554.5 YAAW	bactNOG[38] 08QUJ@bactNOG,0QNZQ@gproNOG,1766X@proNOG,COG4735@NOG 0QNZQ 4.03077685534e-88 289.356018066 S UPF0174 protein Yaak	A Contract of the second se
NC_009648.1_12	272620.KPN_00013	2.7e-89 285	.7 YAAI	bactNOG[38] 08WTA@bactNOG,00R9G@gproNOG,11IQ3@NOG,17BHA@proNOG 00R9G[2.92907184172e-77 257.755126953 S UPF0412 protein YaaI	

Databases of Note: COG, KEGG, GO, Pfam/SMART

Gene Ontology & Pathway Annotation

Tool	Time(s)	Annotations	Genes	Proportion
Diamond-non	7615	25519	26807	0.951952848
HMM-non	17433	25232	26807	0.941246689
InterProScan5-non	18120	25309	26807	0.944119073
Diamond-clustered	5744	25516	26807	0.951840937
HMM-clustered	5245	25231	26807	0.941209386
InterProScan5-clustered	10516	25231	26807	0.941209386

Specific Tools (Based on features to be annotated)

Protein-coding regions

- Transmembrane regions
- Enzymes
- Signaling peptides
- Operons
- Lipoproteins

• Non-coding RNA

- \circ rRNA, tRNA and sRNA
- CRISPR

Others:

- Antibiotic resistance
- Pathway
- Prophage genes
- Virulence factors

ncRNAs

- Tools used in prediction group will predict and annotate at the same time
 - tRNAscan, Aragorn, and Rfam

CRISPR

• Pilercr1.06

- Current version: 1.06 (Jan 20, 2007)
- Command Line: ./pilercr -in <input_file.fasta> -out <output_file>
- Running time: <2s/genom
- Identify the characteristic signature of CRISPR repeats; repeats and spacers are within the expected ranges of length and sequence conservation (parameters of the algorithm and can be changed by the user)

• CRT

- Current version: 1.1 (March 14, 2007)
- Command Line: java -cp CRT1.2-CLI.jar crt [options] inputFile [outputFile]
- Running time: <2s/genom
- Screens for exact k-mer/k-nucleotide repeats in a genome, and concatenates the neighbouring repeats into candidate CRISPRs

CRISPR

Klebsiella pneumoniae Genomes	CRT (Blast against to CRISPRdb)	Pilercr1.06 (Blast against to CRISPRdb)	NCBI Annotation
CP007727.1	0/0	0/0	0
NC_011283.1	0/0	0/0	0
NC_016845.1	0/0	0/0	0
NZ_CP008827.1	0/0	0/0	0
NC_009648.1	0/1	0/0	0
NC_017540.1	0/0	0/1	0
NC_012731.1	2/2	2/2	2
NC_018522.1	2/2	2/2	2

Specific Tools (Based on features to be annotated)

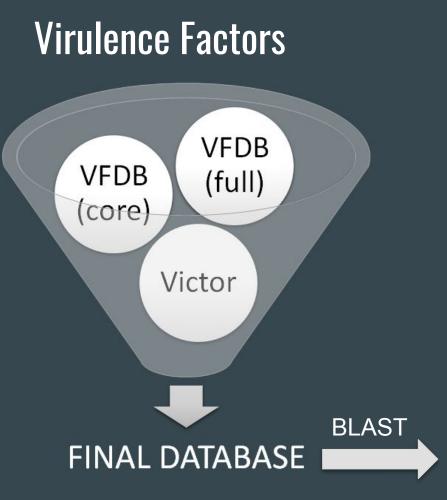
Protein-coding regions

- Transmembrane regions
- Enzymes
- Signaling peptides
- Operons
- Lipoproteins
- Non-coding RNA
 - rRNA, tRNA and sRNA
 - CRISPR

- Others:
 - Antibiotic resistance
 - Virulence factors
 - Prophage genes

Resistance Gene Identifier (CARD)

Command:


rgi -t protein -i clustered.fa

For 5 genomes: ~30 minutes

For clustered equivalent: ~10 minutes

(should not change much with additional genomes)

Result accuracy not yet evaluated

Fetch the fasta files from VFDB and VICTOR using "wget" command

Build a FINAL "Combined Database" using "makeblastdb"

BLAST the query sequence against the combined database using "blastn"

Time taken to generate results: ~19 secs. for 5 test files

Output in the form of table containing details: query name, query start, query stop, percent identity, evalue, name of virulence factor

RESULTS

Test Run with Reference Assembly

NC_016845.1 3448881 3458372 99.937 0.0 VF6034118(gi:218705473) (irp1) High-molecular-weight nonribosomal peptide/polyketide synthetase 1 [Yersiniabactin siderophore (CVF458)] [Escherichia coli 017:K52:1 18 str. UMM026] NC_016845.1 3448881 3458372 99.831 0.0 VF6000362(gb|NP_405471) (irp1) yersiniabactin biosynthetic protein Irp1 [Yersiniabactin (VF0136)] [Yersinia pestis C092] NC_016846.1 9489 10258 88.586 0.0 VF6012785(gi:3776756) (ospC4) - [Mxi-Spa TTSS effectors controlled by VirB (CVF463)] [Shigella boydii Sb227]

Test Run with Team 2 Genome Assembly Results

scaffold1 size427644	376880	380623	86.035	0.0	gi 16445223:1817022-1820765 Escherichia coli 0157:H7 str. EDL933 chromosome, complete genome
scaffold1 size427644	38469	42205	76.679	0.0	gi 16445223:1817022-1820765 Escherichia coli 0157:H7 str. EDL933 chromosome, complete genome
scaffold1 size427644	413868	414959	84.826	0.0	gi 117622295:1270445-1271536 Escherichia coli APEC 01, complete genome
scaffold2 size413645	230423	233047	88.343	0.0	gi 16763390:2373710-2376346 Salmonella enterica subsp. enterica serovar Typhimurium str. LT2 chromosome, complete genome
scaffold2 size413645	191402	194128	85.327	0.0	gi 205351346:2416815-2419541 Salmonella enterica subsp. enterica serovar Gallinarum str. 287/91 chromosome, complete genome
scaffold3 size383805	26216	28702	99.839	0.0	VFG043625(gi:238896388) (mrkC) fimbrial biogenesis outer membrane usher protein mrkC precursor [type 3 fimbriae (biofilm formation) (AI076)] [Klebsiella pr
eumoniae subsp. pneumor	niae NTUH	I-K2044]			
scaffold3 size383805	38935	41547	94.266	0.0	VFG043616(gi:206577896) (fimD) outer membrane usher protein fimD [type 1 fimbriae (AI075)] [Klebsiella pneumoniae 342]
scaffold4 size340664	241819	244038	76.854	0.0	gi 16445223:4066968-4069262 Escherichia coli 0157:H7 str. EDL933 chromosome, complete genome
scaffold4 size340664	177376	178515	84.307	0.0	gi 218698419:2234381-2235505 Escherichia coli IAI39, complete genome
scaffold5 size331356	270048	272149	84.670	0.0	gi 16763390:661273-663378 Salmonella enterica subsp. enterica serovar Typhimurium str. LT2 chromosome, complete genome
scaffold5 size331356	270044	272148	84.408	0.0	gi 29140543:2333603-2335708 Salmonella enterica subsp. enterica serovar Typhi str. Ty2 chromosome, complete genome
scaffold6 size318597	296	2868	85.753	0.0	gi 16763390:2802115-2804688 Salmonella enterica subsp. enterica serovar Typhimurium str. LT2 chromosome, complete genome
scaffold6 size318597	192178	194414	83.564	0.0	gi 207855516:2991566-2993800 Salmonella enterica subsp. enterica serovar Enteritidis str. P125109 chromosome, complete genome
scaffold7 size271828	107919	111135	88.630	0.0	gi 49175990:30816-34037 Escherichia coli str. K-12 substr. MG1655 chromosome, complete genome
scaffold7 size271828	238769	240918	86.704	0.0	gi 29140543:4734841-4736991 Salmonella enterica subsp. enterica serovar Typhi str. Ty2 chromosome, complete genome
scaffold8 size248034	166065	168185	88.177	0.0	gi 207855516:3815173-3817284 Salmonella enterica subsp. enterica serovar Enteritidis str. P125109 chromosome, complete genome
scaffold8 size248034	21833	23374	93.839	0.0	gi 16763390:4076433-4077974 Salmonella enterica subsp. enterica serovar Typhimurium str. LT2 chromosome, complete genome
scaffold9 size203741	201502	203106	84.773	0.0	gi 170679574:3932412-3934019 Escherichia coli SMS-3-5, complete genome
scaffold9 size203741	201502	203106	84.639	0.0	gi 215485161:3954556-3956163 Escherichia coli 0127:H6 str. E2348/69, complete genome
scaffold10 size193900	27568	29861	80.061	0.0	gi 16445223:4066968-4069262 Escherichia coli 0157:H7 str. EDL933 chromosome, complete genome
scaffold10 size193900	62221	63906	82.454	0.0	gi 16763390:1915221-1916906 Salmonella enterica subsp. enterica serovar Typhimurium str. LT2 chromosome, complete genome
scaffold11 size182822	163696	166221	87.732	0.0	VFG034483(gi:222155097) (ecpC) hypothetical protein [E. coli common pilus (ECP) (CVF625)] [Escherichia coli 083:H1 str. LF82]
scaffold11 size182822	163696	166221	87.732	0.0	VFG018216(gi:91209353) (ecpC) hypothetical protein YagX precursor [E. coli common pilus (ECP) (CVF625)] [Escherichia coli UTI89]
scaffold12 size135437	32999	35415	83.169	0.0	gi 74310614:4633502-4635943 Shigella sonnei Ss046, complete genome
scaffold12 size135437	32999	35415	83.004	0.0	gi 110804074:4479325-4481766 Shigella flexneri 5 str. 8401, complete genome
scaffold14 size108818	31009	33681	78.439	0.0	gi 16445223:2247962-2250637 Escherichia coli 0157:H7 str. EDL933 chromosome, complete genome
scaffold14 size108818	35805	38400	77.605	0.0	gi 123440403:2409235-2411850 Yersinia enterocolitica subsp. enterocolitica 8081, complete genome
scaffold15 size106624	35231	36166	98.825	0.0	VFG044322(gi:238894719) (iroE) hypothetical protein [Salmochelin (IA015)] [Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044]

Phaster

- Run time: ~10mins/genome
- 3 Output files
- Disadvantages:
 - No options
 - Their server only takes one file at a time

• What I did:

- Wrote script to check the status every 5 mins
- Download and unzip the result when it's completed

Output File 1: Summary.txt

- Intact: >90
- Questionable: 70 90
- Incomplete: < 70

Criteria for scoring prophage regions (as intact, questionable, or incomplete): Method 1:

1. If the number of certain phage organism in this table is more than or equal to 100% of the total number of CDS of the region, the region is marked with total score 150. If less than 100%, method 2 and 3 will be used.

Method 2:

If the number of certain phage organism in this table is more than 50% of the total number of CDS of the region, that phage
organism is considered as the major potential phage for that region; the percentage of the total number
of that phage organism in this table in the total number of proteins of the region is calculated and
then multipled by 100; the percentage of the length of that phage organism in this table in the length
of the region is calculated and then multipled by 50 (phage head's encapsulation capability is considered).

Method 3:

- If any of the specific phage-related keywords (such as 'capsid', 'head', 'integrase', 'plate', 'tail', 'fiber', 'coat', 'transposase', 'portal', 'terminase', 'protease' or 'lysin') are present, the score will be increased by 10 for each keyword found.
- 2. If the size of the region is greater than 30 Kb, the score will be increased by 10.
- 3. If there are at least 40 proteins in the region, the score will be increased by 10.
- 4. If all of the phage-related proteins and hypothetical proteins constitute more than 70% of the total number of proteins in the region, the score will be increased by 10.

Compared the total score of method 2 with the total score of method 3, the bigger one is chosen as the total score of the region. If the region's total score is less than 70, it is marked as incomplete; if between 70 to 90, it is marked as questionable; if greater than 90, it is marked as intact.

Output File 1: Summary.txt

- Region
- Completeness
- Specific Keyword
- Region Position
- Most Common Phage Name

- Preliminary Results
 - *Klebsiella pneumoniae* Reference Genome
 - 8 Prophage Regions
 - 4 Regions are intact (Score >=100)
 - SRR3467249 1 out of 5 Regions is intact
 - SRR3982229 1 out of 6 Regions is intact
 - SRR3982230 1 out of 7 Regions is intact
 - SRR3982253 3 out of 6 Regions are intact
 - SRR3982316 1 out of 5 Regions is intact

PHAGE_HIT_PROTEIN_NUM FIRST_MOST_COMMON_PHAGE_NUM	REGION HYPOTHETICAL_ FIRST_MOST_CO	REGION_LENGTH PROTEIN_NUM MMON_PHAGE_PERCENTA(COMPLETENESS(score) PHAGE+HYPO_PROTEIN_PERCENTAGE GC_PERCENTAGE	SPECIFIC_KEYWORD BACTERIAL_PROTEIN_NUM	ATT_SITE_SHOWUP	REGION_POSITION	TRNA_NUM PHAGE_SPECIES_NUM	TOTAL_PROTEIN_ MOST_COMMON_PHA	NUM GE_NAME(hit_genes_count)
4	1 100%	13.5Kb	questionable(75)	integrase, transposase, head ves	5	581768-595336	0	15	11
- PHAGE_Entero_P4_NC_001609(7),PH	AGE_Salmon_SJ46	_NC_031129(1), PHAGE	Entero_N15_NC_001901(1),PHAGE_E	rwini_ENT90_NC_019932(1),PHAGE_Ser 166(1),PHAGE_Entero_WPhi_NC_005056	rat_Eta_NC_021563	(1), PHAGE_Ralsto	RSY1_NC_025115(1),P	HAGE_Salmon_SP_004_NC_021774(C_005069(1)_PHAGE_Salmon_Fels	1), PHAGE_Rueger_DSS3_P1_N
ero_fiAA91_ss_NC_022750(1),PHAG	GE_Xantho_vB_Xve	M_DIBBI_NC_017981(1)	,PHAGE_Burkho_KL3_NC_015266(1)	7	46.66%	_100_NC_001517(17)	50.39%		_1_NC_010591(1), [[[NOL_C]]]

Output File 2: Detail.txt

>NC 016845.1 Klebsiella pneumoniae subsp. pneumoniae HS11286 chromosome, complete genome CDS_POSITION BLAST_HIT EVALUE prophage PRO SEO #### region 1 #### 581768..581781 N/A GAGTCCGGCCTTCG attL 581952.583214 PHAGE Entero P4 NC 001609: integrase; PP 00519; phage(gi9627511) 0.0 MKLNAROVETAKPKDKTYKMADGGGLYLEVSAKGSKYWRMKYRRPSDKKEDRLAFGVWPTVTLA0ARTKRDEAKKLLV0GIDPKAE0KEA0AENSGAYTFETIAREWHASNKRWSEDHRSRVLRYLELYIFPHIGSSDIR0LKTSHLLAPIKKVDASGKHDVA0RL00RVTAIMRYAV0NDYIDSNPASDMAG ALSTTKARHYPALPSSRFPEFLARLAAYRGRVMTRIAVELSLLTFVRSSELRFARWDEFDFAKSLWRIPAKREEIKGVRYSYRGMKMKEEHIVPLSRQAIVLLEQLKQISGDKELLFPGDHDATKVMSENTVNGALRAMGYDTKTEVCGHGFRTMARGALGESGLWSDDAIEROLSHSERNNVRAAYIHTSEH LDERRLMVOWWADYLKSNEGKIVTPYEFAKIRKS complement(583272..584282) N/A hypothetical; PP 00520 MIYITSVSKETSMTKYEVKMKKNIRVIPKNIHSKLRRLGNTVVAGTSIAFTENOLKNGMLEHLGIYFDNDVIKYEASIIPDPLQGKYSFKNVFGEEVIRKDLPKETHYTEIESPNWGDSSNGTHTVRLPHDKYPRDIIPPKLIAIEINHKKSSDSYFIFNFRATRILEKNSNKFDDELLFDLNLLQENLGKCG VENADKPTSTYADTLTVSWDTEPPGSKEETLARTEKGKNTTDDKKAVAENRYEEFMSLEPKKTVTGNSTESNYTGAMLEDDLVVEENTEYGNATYTLYDDWDETSKLSRTDLLSGRAGSNEDRTTHSGNWKEEVRKKVATGRL hypothetical: PP 00521 complement(584770..585849) N/A MNIGHLNFFKVNKCGLYKVNDNNTYGLELSETFDLIDDWVGTKSLALTIPWDPKEKPNRSKCYCKDIYKDENTGDFLIMLWKSDTDSTGSLLGASEDGEIGSSSVVKYTNSYRGKKVIWGRPCFYWVIPELETIVSIKFDHSICDSELF0DYVHSSITNRVKHSKRVKNKTEKGYIRLSNTDDDDLYKYMYRF DMKLRSLETTHTELGKLIPKITHIVRRETIIINPNDARADWLKTFSTLVPFVSGKKNTRTRQIEIKAEAKPSLNEVKEIIEKYSSEDREKRLWDNVGFATDKGITWVDKYRMRDILNVPSEDYSTYSAAYIYEQISHKRKEFISPILKESKALQSQSRINKASGED 586099..587022 PHAGE Entero HK022 NC 002166: IS903 transposase; PP 00522; phage(gi9634149) 0.0 VAKOKFKITNWPTYNKALINRGSITFWLDDEAI0AWYESATPSSRGRPORYSDLAITTVLVIKRVFRLTLRAA0GFIDSIFSLMNVPLRCPDYSCVSRRAKSVNISFKTPTRGEIAHLVIDSTGLKVFGEGEWKVKKHGOERRRIWRKLHLAVDSKTHEIICADLSLNNVTDSEAFPGLIROTHRKIRSAAAD GAYDTRLCHDELRRKKISALIPPRKGAGYWPGEYADRNRAVANORMTGSNARWKWTTDYNRRSIAETAMYRVKOLFGGSLTLRDYDGOVAEAMALVRALNKMTKAGMPESVRIA complement(587656..588222) PHAGE Entero P4 NC 001609; amber mutation-suppressing protein; PP 00523; phage(gi9627520) 2.48e-75 MTTLTL00AFEAC0KNETAWLNRKAELAAAE0EY0E0VLAGDDRIPAIM0ELRDIIDVKKWEIN0AAGRYIRSHEAV0RISIRNRLNDFM0AHGTELAATLAPELMGLS00PALLTGHALDRSAHYLREALSVWLSTGEEINYAAEDSDILTAIGFRPDAASRVDN0EKYTPA0SLIYARRRTELASK complement(588240..588485) PHAGE Entero 186 NC 001317: B protein; PP 00524; phage(gi9634083) 8.88e-18 MMHCPFCKKSAHARTSRYLSENVKORYHOCTNIECSATFRTTEAIDEVIRPPAEKAPPVAEPVTPPAPRNVOGCYSSPYRH complement(588482..589219) PHAGE_Entero_P4_NC_001609: head size determination protein sid; PP_00525; phage(gi9627518) 1.59e-95 MTDTTFIPDYLKPALERLAEARAAHLE0ARLMEDTLTAITRAEE0KAELE0DMGSDTRTWRAAFRAGGAMLTDELKSGHIERVARRELA0ECHNLTEVLAFERDOLKATCNSTARAFROAHHAVLSKYAEEELNRALNDTLGPLVRAMVLKAEVMANPLANTTGHOGYTEPEKEVMH0VVTFLTGKVSAFSVT PADEPVLSLTGFPAVALAHMDHDAASTPGERKVW0EKIROREADLKARGLLP

Output File 3: phage_regions.fna

>1 581768-595336 GAGTCCGGCCTTCGGCACCATTAGTACTTCCAAGACCATCCGAGAAAGTCCAATTATCCCTTAAAAATCA ATGCTTGCAGCGATTTTTACGTCCTGAGTCGTCCGAGGTTGTCCGTTGAAATCCGGATGTCATTGGGGGGC GACCGCAAAGCCCAAAGACAAAAACCTACAAAATGGCTGATGGCGGCGGTTTGTATCTCGAAGTTTCGGCT AAGGGGTCTAAATACTGGCGCATGAAATACAGACGCCCCTCTGACAAAAAAGAGGATCGCCTTGCTTTTG GTGTTTGGCCAACTGTGACGCTTGCTCAGGCAAGAACCAAGCGCGACGAAGCTAAAAAGCTGTTAGTACA GGGCATTGACCCAAAAGCCGAACAGAAAGAAGCTCAGGCCGAGAATTCGGGGGCATATACTTTCGAAACA TTGAGCTTTATATCTTCCCTCATATCGGTTCGTCCGACATTCGCCAGCTCAAAACCAGCCACCTGTTAGC CCCGATTAAAAAAGTTGATGCCAGTGGCAAACATGACGTCGCGCAGCGTCTTCAGCAGCGTGTAACGGCC ATTATGCGCTATGCCGTTCAGAACGATTACATAGACTCAAACCCGGCCAGTGATATGGCTGGTGCTTTAT CAACAACCAAAGCAAGACACTATCCAGCTTTACCCTCTAGCCGTTTCCCTGAATTTCTTGCTCGTCTGGC GGCATATCGTGGTCGTGTAATGACACGGATCGCCGTAGAGCTTTCATTGCTCACTTTTGTACGTTCCAGT GAACTCCGTTTTGCACGTTGGGATGAATTCGATTTTGCTAAATCTCTTTGGCGTATACCTGCAAAGCGTG AAGAAATTAAAGGCGTACGTTACTCCTACCGCGGCATGAAGATGAAAGAGGAACATATAGTTCCGCTTAG TCGACAAGCTATAGTGTTGTTAGAGCAGCTTAAGCAAATCAGTGGTGATAAAGAGCTACTTTTTCCGGGA GATCACGACGCAACGAAGGTCATGAGTGAAAACACAGTAAACGGTGCGTTGCGTGCTATGGGCTATGATA GAGTGATGATGCTATAGAACGCCAACTGAGTCATTCAGAGCGTAATAATGTACGTGCAGCATATATTCAC ACTTCTGAACATTTAGATGAACGCCGTTTAATGGTGCAATGGTGGGCTGATTATCTCAAATCAAATGAAG GCAAAATAGTCACACCTTATGAATTTGCCAAAATAAGAAAAAGCTGATAGCAGAAATAAACGCCTCTACA AAAAGAAGGCGTTTATTTATATTAAAATATTGAATCATAATCTTCCAGTAGCAACTTTTTTCGTACTTC CTCTTTCCAATTACCACTGTGGATTATTCTATCAAAATTACTTCCTGCTCTTCCTGATAACAAATCAATT CAAAAACAACCAGATCGTCCTCTAGCATAGCTCCAATGTAATTACTGAACGTACTATTTCCAGTAACAAT TTTTTTAGGTTCAAGGCTCATGAAGAACTCATATCTATTTTCAGCAACGGCTTTCTTATCGTCAGTTATG TTTTTTCCTTTGAAAATTCTTGCTAAAATTTCTTCTTTGCTACCTGGCGGAAATATGTCCCATGAGACTA TAAGTGTATCAGCATAAGTAGATATAGGTTTATCAGCATTCTCAACGCCACATTTACCGAGATTTTCTTG AAGAAGATTTAGATCAAATAGCAACTCATCATCAAACTTATTTGAATTTTTTTCTAAAATTCTAGTTGCT CTGAAATTAAATATAAAATAGCTGTCCGAGGACTTCTTGTGATTAATTTCAATTGCTATAAGTTTTGGTG GGATTATGTCTCTGGGGTATTTATCGTGAGGTAATCTAACAGTATGTGTACCGTTAGAGCTATCCCCCCA GTTAGGTGACTCAATTTCGGTATAGTGAGTTTCTTTTGGGAGGTCTTTTCTGATGACTTCCTCGCCGAAA ACATTTTTAAATGAATATTTACCTTGCAATGGATCAGGAATGATCGATGCCTCATATTTAATAACATCAT TATCAAAATATATTCCGAGATGCTCTAACATTCCATTTTTTAATTGATTCTCTGTAAATGCGATCGAAGT GCCAGCAACGACTGTATTGCCAAGCCTTCTTAACTTGCTATGAATGTTTTTAGGTATAACACGTATATTC

References

- Seemann, Torsten. "PROKKA: Rapid Prokaryotic Genome Annotation" *Bioinformatics* 30.14 (2014):2068-2069
- Petersen, Thomas Nordahl, et al. "SignalP 4.0: discriminating signal peptides from transmembrane regions." *Nature methods* 8.10 (2011): 785.
- Käll, Lukas, Anders Krogh, and Erik LL Sonnhammer. "A combined transmembrane topology and signal peptide prediction method." *Journal of molecular biology* 338.5 (2004): 1027-1036.
- Juncker, Agnieszka S. et al. "Prediction of Lipoprotein Signal Peptides in Gram-Negative Bacteria." *Protein Science : A Publication of the Protein Society* 12.8 (2003): 1652–1662.
- Mao, Xizeng et al. "DOOR 2.0: Presenting Operons and Their Functions through Dynamic and Integrated Views." *Nucleic Acids Research* 42.Database issue (2014): D654–D659.
- Jones, Philip et al. "InterProScan 5: Genome-Scale Protein Function Classification." *Bioinformatics* 30.9 (2014): 1236–1240.

References

- Jensen, Lars Juhl et al. "eggNOG: Automated Construction and Annotation of Orthologous Groups of Genes." *Nucleic Acids Research* 36.Database issue (2008): D250–D254.
- Nawrocki, Eric P., Diana L. Kolbe, and Sean R. Eddy. "Infernal 1.0: Inference of RNA Alignments." *Bioinformatics* 25.10 (2009): 1335–1337.
- Edgar, Robert C. "PILER-CR: Fast and Accurate Identification of CRISPR Repeats." *BMC Bioinformatics* 8 (2007): 18.
- Jia, Baofeng et al. "CARD 2017: Expansion and Model-Centric Curation of the Comprehensive Antibiotic Resistance Database." *Nucleic Acids Research* 45.Database issue (2017): D566–D573.
- Chen, Lihong et al. "VFDB: A Reference Database for Bacterial Virulence Factors." *Nucleic Acids Research* 33.Database Issue (2005): D325–D328.
- Arndt, David et al. "PHASTER: A Better, Faster Version of the PHAST Phage Search Tool." *Nucleic Acids Research* 44.Web Server issue (2016): W16–W21.

