Genome Assembly Preliminary Results

Team 1: Vasanta, Qinwei, Tianze, Seonggeon, Kunal, Siarhei, Victoria, Nirav, Hunter

Presented by Nirav Shah, Hunter Seabolt, and SRR5666627

Presentation Outline

- Trim/QC
- Workflow
- Examples
- Comparison and selection of trimming software
- Clean Data
- Assembly and Preliminary Results
- Workflow
- Biological Considerations
- Reference Based genome assembly
- de novo genome assembly
- Comparison of de novo assemblers
- Post-processing
- QC
- Visualization

Data and Background

- Problem:
- Antibiotic resistance in Klebsiella
- Data:
- 260 isolates of Klebsiella spp.
- 2×250 Illumina short reads (MiSeq platform)
- Background:
- Generic biological characteristics
- 1 chromosome, likely some plasmids
- Genome size: ~ 5.3-5.5 Mbp

https://sciencesource.com/Doc/SCS/Media/TR7/f/3/6/f/SS2294165 .jpg?d63641835809
- GC content: ~57.1 \% GC
- Objective:

Generate a pipeline to assemble and QC short read data, with respect to biological characteristics and downstream analyses.

Raw, unloved sequence data

Forward Reads

Avg. Phred Score

Avg Nucleotide \%

GC content

Andrews S. (2010). FastQC: a quality control tool for high throughput sequence data. Available online at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc

Trimming

Sequencing Bias

- Introduced during library preparation
- Non-random favoring of primer sequences during amplification
- To be removed or not?

Trimming Tools

Quality stores atrost all bases (Sanger / tlumina 1.9 enceding)

nezing in reata (hal)

Quality scores:

$$
- \text { Phred Q-score }=-10 \log _{10} P
$$

* At 1x depth coverage:

Q-score	Incorrect Base Call (Probability)
10	1 in 10 (90\%)
20	1 in $100(99 \%)$
30	1 in $1000(99.9 \%)$
40	in $10,000(99.99 \%)$

Trimming Software:

BBDuk

Trimmomatic

SolexaQA++
Sickle
Seqtk
TrimGalore

Trimming Software

 BBDukTrimmomatic
SolexaQA++
Sickle
Seqtk
TrimGalore

What to look for?

Average Phred Score

Per Base Sequence Content

Adapter Content

Sequence Length Distribution

Which trimming tool performs the best?

Which trimming tool performs the best?

Trim the sample data with standardized
parameters

Which trimming tool performs the best?

Which trimming tool performs the best?

Which trimming tool performs the best?


```
Tools for Trimming:
BBDuk
Trimmomatic
SolexaQA++
Sickle
Seqtk
TrimGalore
```

Parameter:

- Quality Trimming - Q20

Which tool performs the best?

Software	Run time (in seconds)	Output File (MB)	Multitask capacity
SolexaQA++	80.24	393.6	no
Sickle	5.19	508.3	no
TrimGalore	2.63	486.4	no
BBDuk	3.17	428.7	yes
Trimmomatic	3.09	383.9^{*}	yes
Seqtk	3.41	433.5	yes

Which tool performs the best?

Raw Reads

Software	Run time (in seconds)	Output File (MB)	Multitask capacity
SolexaQA++	80.24	393.6	no
Sickle	5.19	508.3	no
TrimGalore	17.7	486.4	no
BBDuk	3.17	428.7	yes
Trimmomatic	3.09	383.9^{*}	yes
Seqtk	3.41	433.5	yes

Which tool performs the best?

Raw Reads

Software	Run time (in seconds)	Output File (MB)	Multitask capacity
SolexaQA++	80.24	393.6	no
Sickle	5.19	508.3	no
TrimGalore	17.77	486.4	no
BBDuk	3.17	428.7	yes
Trimmomatic	3.09	383.9^{*}	yes
Seqtk	3.41	433.5	yes

BBDuk

Which tool performs the best?

Software	Run time (s)	Output File (MB)	Multitask capacity
SolexaQA++	80.24	393.6	no
Sickle	5.19	508.3	no
TrimGalore	17.77	589.9	yes
BBDuk	3.17	428.7	yes
Trimmomatic	3.09	383.9^{*}	yes
Seqtk	3.41	433.5	yes

Sickle

position

trimmer

- BBDuk
.-.. Raw
-.. SeqTK
- - Sickle
.... SolexaQA
- TrimGalore
- Trimmomatic

Graphs generated using QRQC(R)
Vince Buffalo (2012). qrqc: Quick Read Quality Control. R package version 1.32.0. http://github.com/vsbuffalo/grqc

Which tool performs the best?

Software	Run time (in seconds)	Output File (MB)	Multitask capacity
SolexaQA++	80.24	393.6	no
Sickle	5.19	508.3	no
TrimGalore	12.63	589.9	yes
BBDuk	3.17	428.7	yes
Trimmomatic	3.09	383.9^{*}	yes
Seqtk	3.41	433.5	yes

Winner:

Trimmomatic

* Trimmomatic uses a sliding window trimming algorithm - was set to 1 here in order to be most comparable.

Clean Data, courtesy of Trimmomatic

Trimmomatic

Biological Considerations

Bacterial genomes are single, circular chromosomes

Ideal End Goal:

An assembly containing only 1
contig
(extra credit if it's circular)

What is contamination and how did it

Reference Based Assembly

Full Report -

ASM988v

Organism name: Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044 (enterobacteria) Infraspecific name: Strain: NTUH-K2044
BioSample: SAMD00060934
Submitter: National Health Research Institutes

Assembly level: Complete Genome

Genome representation: full
GenBank assembly accession: GCA_OU000Y885. 1 (latest) RefSeq assembly accession: GCF_000009885.1 (latest) RefSeq assembly and GenBank assembly identical: yes
IDs: 31388 [UID] 10688 [GenBank] 31388 [RefSeq]
History (Show revision history)

Comment

This sequence was determined by the K. pneumoniae Genome Project at the Yang-Ming University VYM G study were from NRPGM of R.O.C

Global statistics
Global statistics

Total sequence length		$5,472,672$
Total assembly gap length	0	
Total number of chromosomes and plasmids	2	

De novo assembly: Kmer selection

- De Bruijn graph-based assemblers split reads into kmers for graph construction.
- Assembly outcome is heavily influenced by the choice of kmer values.
- Problematic palindromes
- Sweet spot between sensitivity and specificity
- Where is this magical sweet spot?
- Short answer: it's different for every sample you assemble due to quality of seq data, genome complexity, etc. Garbage in, garbage out.

Tools for kmer estimation:

Preliminary results: comparison of assemblies

Using $k=41$, determined by kmergenie

Assembler	Run Time (s)	Kmer	\# contigs	N50 (kbp)	Total length (Mbp)	GC \%	\# N's
Spades	403	41	82	200.1	5.74	56.97	370
Skesa	87	41	111	120.4	5.67	56.98	0
IDBA-UD	56	41	192	66.5	5.75	56.98	0
Tadpole	13.3	41	343	56.0	5.70	56.96	0
IDBA-Hybrid	81	41	190	62.5	5.63	56.98	0
Ref-based (Samtools)	395	--	2	5,248.5	5.47	58.08	521,755

- all assemblers compared here support multi-threading. This parameter left as default.
- Only Spades and Tadpole allow for add'n single end read input (not used here)
- Skesa does not include a built-in scaffolder.

Which assembly is best?

Overall, Spades and Skesa are

 pretty comparable with this kmer value.
Preliminary results: comparison of assemblies

Using k=99, determined by us using Spades

Assembler	Run Time (s)	Kmer	\# contigs	N50 (kbp)	Total length (Mbp)	GC \%	\# N's
Spades	421	99	68	275.9	5.745	56.96	170
Skesa	89.5	99	195	60.7	5.668	56.96	0
IDBA-UD	50.8	99	121	119.7	5.748	56.96	0
Tadpole	15.3	99	244	44.5	5.745	56.97	0
IDBA-Hybrid	82.8	99	161	83.5	5.751	56.96	0
Ref-based (Samtools)	395	--	2	5,248.5	5.47	58.08	521,755

- all assemblers compared here support multi-threading. This parameter left as default.
- Only Spades and Tadpole allow for add'n single end read input (not used here)
- Skesa does not include a built-in scaffolder.

Which assembly is best?

Spades (k=99) has lowest \#
contigs, highest N50 of all de novo assemblies attempted.

Drawback: also takes the longest to run, has some N's

Preliminary results: Draft QC (Quast)
 For draft assemblies where k=99

Genome statistics heatmap ($m=500$)

Cumulative length of draft assemblies

Indications of contamination

- GC content
- Many misassemblies compared to reference genome*
- Depth coverage anomalies
. Highly fragmented assemblies

Preliminary results: Visualization

Visualize the de Bruijn graph with Bandage

- Check for circular (ie. closed) chromosome

Visually inspect alignment quality with IGV

Post-Assembly Finishing

Questions?

Additional References

- Bankevich A. et al. SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing. Journal of Computational Biology, 2012
- Peng, Y., et al. (2012) IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth, Bioinformatics, 28, 1420-1428.
- Cox, M.P., D.A. Peterson, and P.J. Biggs. 2010. SolexaQA: At-a-glance quality assessment of Illumina second-generation sequencing data. BMC Bioinformatics11:485
- Bolger, A. M., Lohse, M., \& Usadel, B. (2014). Trimmomatic: A flexible trimmer for Illumina Sequence Data. Bioinformatics, btu170.
- https://github.com/lh3/seqtk
- https://github.com/FelixKrueger/TrimGalore
- Li H, et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009 Aug 15;25(16):2078-9
- Chikhi R., Medvedev P. Informed and Automated k-Mer Size Selection for Genome Assembly, HiTSeq 2013
- Kurtz S, et al. Versatile and open software for comparing large genomes. Genome Biology (2004), 5:R12.
- James T. Robinson, Helga Thorvaldsdóttir, Wendy Winckler, Mitchell Guttman, Eric S. Lander, Gad Getz, Jill P. Mesirov. Integrative Genomics Viewer. Nature Biotechnology 29, 24-26 (2011)
- Wick R.R., Schultz M.B., Zobel J. \& Holt K.E. (2015). Bandage: interactive visualisation of de novogenome assemblies. Bioinformatics, 31(20), $3350-3352$.
- https://jgi.doe.gov/data-and-tools/bbtools/
- Joshi NA, Fass JN. (2011). Sickle: A sliding-window, adaptive, quality-based trimming tool for FastQ files (Version 1.33) [Software].

Special Thanks:

- David Weiss (Emory)
- Richa Agarwal (NCBI)
- Team 1 Genome Assembly group

Look for a homework
announcement shortly!

