

Genome Assembly Preliminary Results

Team 1: Vasanta, Qinwei, Tianze, Seonggeon, Kunal, Siarhei, Victoria, Nirav, Hunter

Presented by Nirav Shah, Hunter Seabolt, and SRR5666627

Presentation Outline

- Trim/QC
- Workflow
- Examples
- Comparison and selection of trimming software
- Clean Data
- Assembly and Preliminary Results
- Workflow
- Biological Considerations
- Reference Based genome assembly
- de novo genome assembly
- Comparison of de novo assemblers
- Post-processing
- QC
- Visualization

Data and Background

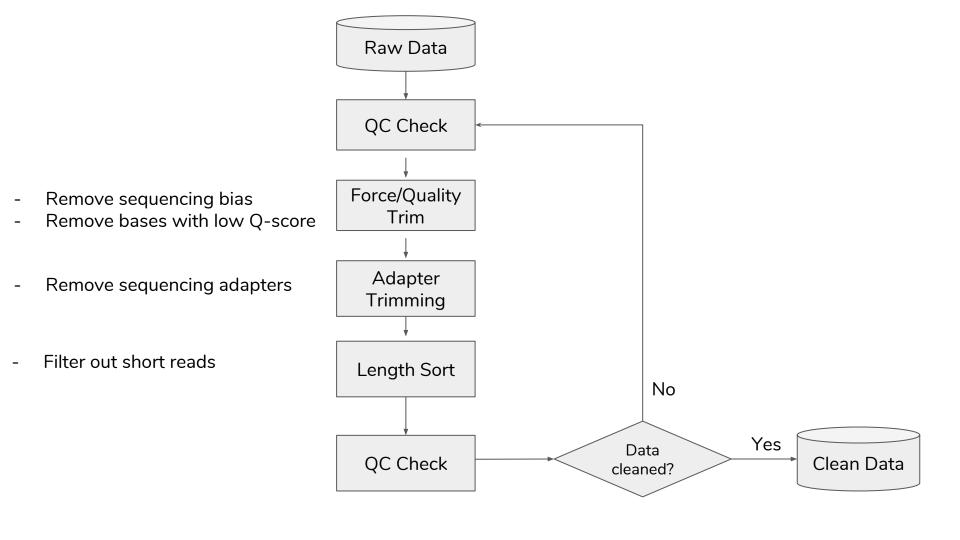
Problem:

Antibiotic resistance in Klebsiella

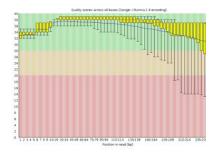
Data:

- 260 isolates of Klebsiella spp.
- 2 x 250 Illumina short reads (MiSeq platform)

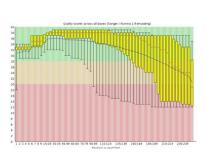
Background:


- Generic biological characteristics
 - 1 chromosome, likely some plasmids
 - Genome size: ~ 5.3-5.5 Mbp
 - GC content: ~57.1 % GC

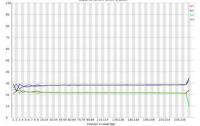
https://sciencesource.com/Doc/SCS/Media/TR7/f/3/6/f/SS2294165 .jpg?d63641835809

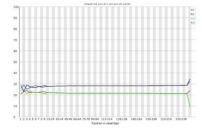

Objective:

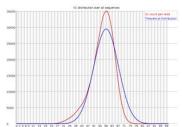
Generate a pipeline to assemble and QC short read data, with respect to biological characteristics and downstream analyses.



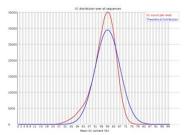
Raw, unloved sequence data


Forward Reads

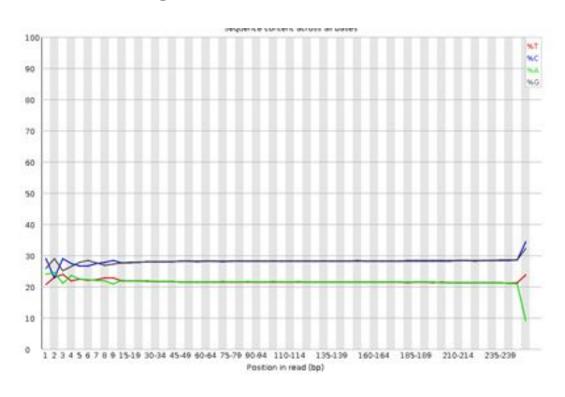

Avg. Phred Score



Reverse Reads

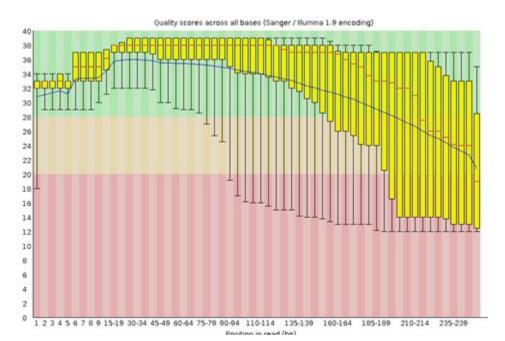


Avg Nucleotide %



GC content

Andrews S. (2010). FastQC: a quality control tool for high throughput sequence data. Available online at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc


Trimming

Sequencing Bias

- Introduced during library preparation
- Non-random favoring of primer sequences during amplification
- To be removed or not?

Trimming Tools

Quality scores:

- Phred Q-score = $-10\log_{10}P$
- * At 1x depth coverage:

Q-score	Incorrect Base Call (Probability)
10	1 in 10 (90%)
20	1 in 100 (99%)
30	1 in 1000 (99.9%)
40	1 in 10,000 (99.99%)

Trimming Software:

BBDuk

Trimmomatic

SolexaQA++

Sickle

Seqtk

TrimGalore

Trimming Software

What to look for?

BBDuk

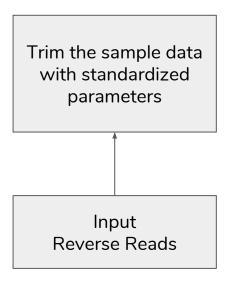
Trimmomatic

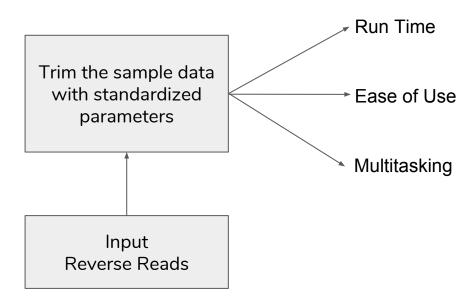
SolexaQA++

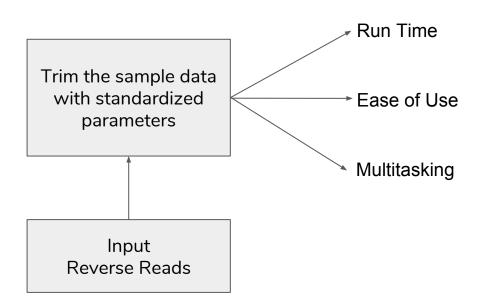
Sickle

Seqtk

TrimGalore


Average Phred Score


Per Base Sequence Content


Adapter Content

Sequence Length Distribution

Trim the sample data with standardized parameters

Tools for Trimming:

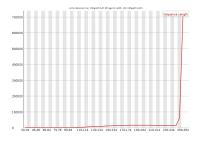
BBDuk

Trimmomatic

SolexaQA++

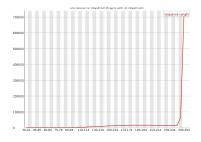
Sickle

Seqtk

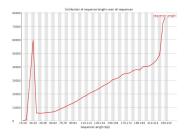

TrimGalore

Parameter:

• Quality Trimming - Q20

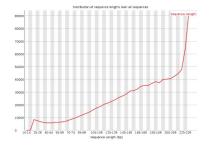

Software	Run time (in seconds)	Output File (MB)	Multitask capacity
SolexaQA++	80.24	393.6	no
Sickle	5.19	508.3	no
TrimGalore	2.63	486.4	no
BBDuk	3.17	428.7	yes
Trimmomatic	3.09	383.9*	yes
Seqtk	3.41	433.5	yes

Raw Reads

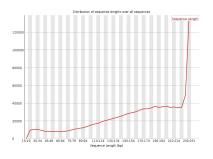


Software	Run time (in seconds)	Output File (MB)	Multitask capacity
SolexaQA++	80.24	393.6	no
Sickle	5.19	508.3	no
TrimGalore	17.7	486.4	no
BBDuk	3.17	428.7	yes
Trimmomatic	3.09	383.9*	yes
Seqtk	3.41	433.5	yes

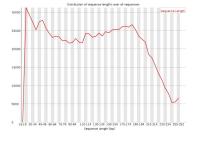
Raw Reads


Software	Run time (in seconds)	Output File (MB)	Multitask capacity
SolexaQA++	80.24	393.6	no
Sickle	5.19	508.3	no
TrimGalore	17.77	486.4	no
BBDuk	3.17	428.7	yes
Trimmomatic	3.09	383.9*	yes
Seqtk	3.41	433.5	yes

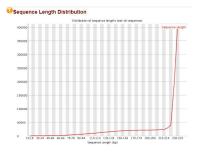
SeqTK

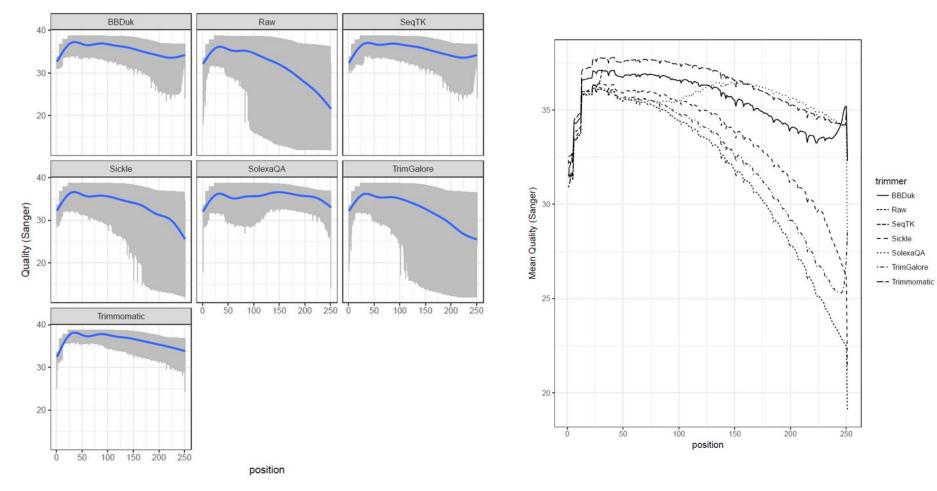


SolexaQA++

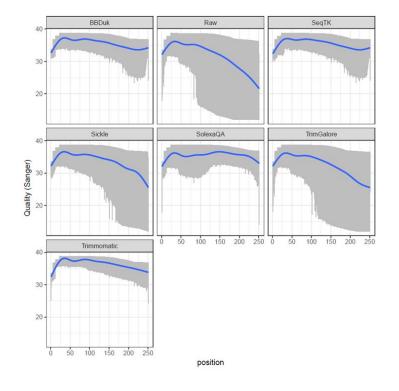


BBDuk

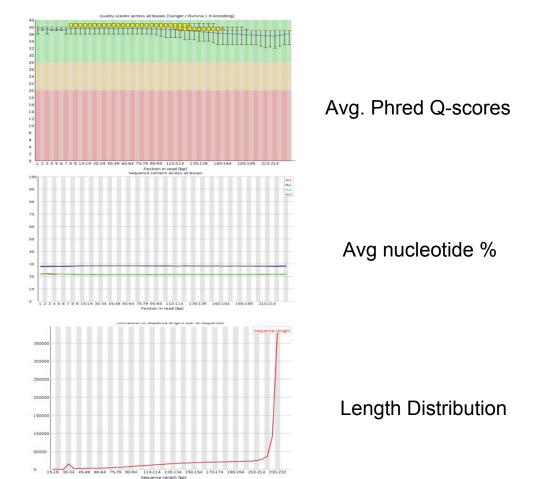

Software	Run time (s)	Output File (MB)	Multitask capacity
SolexaQA++	80.24	393.6	no
Sickle	5.19	508.3	no
TrimGalore	17.77	589.9	yes
BBDuk	3.17	428.7	yes
Trimmomatic	3.09	383.9*	yes
Seqtk	3.41	433.5	yes

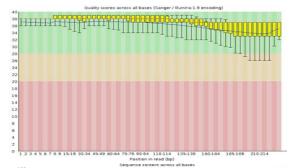

Trimmomatic

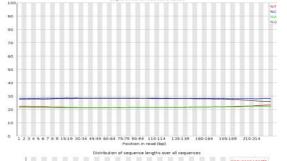
Sickle

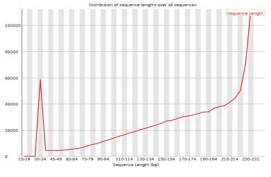

TrimGalore

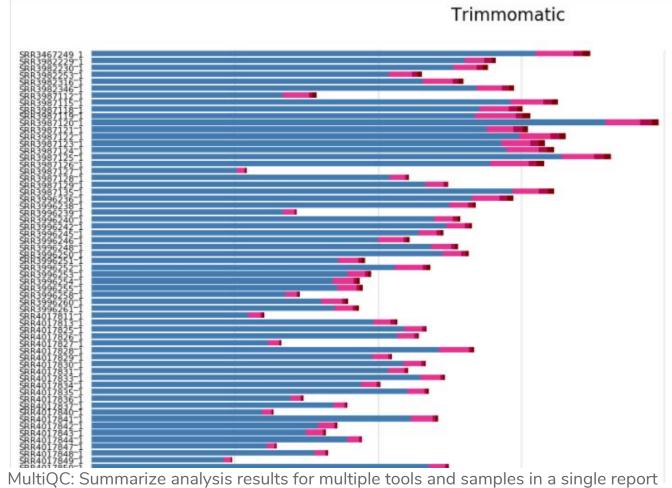
Graphs generated using QRQC(R)
Vince Buffalo (2012). qrqc: Quick Read Quality Control. R package version 1.32.0. http://github.com/vsbuffalo/qrqc

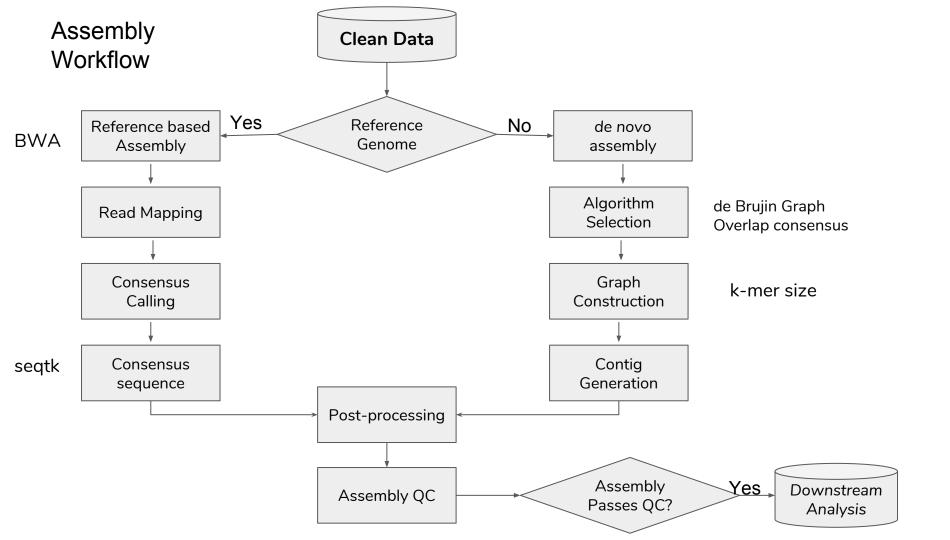

Software	Run time (in seconds)	Output File (MB)	Multitask capacity
SolexaQA++	80.24	393.6	no
Sickle	5.19	508.3 🗸	no
TrimGalore	12.63	589.9	yes
BBDuk	3.17	428.7	yes
Trimmomatic	3.09	383.9*	yes 🗸
Seqtk	3.41	433.5	yes


^{*} Trimmomatic uses a sliding window trimming algorithm – was set to 1 here in order to be most comparable.



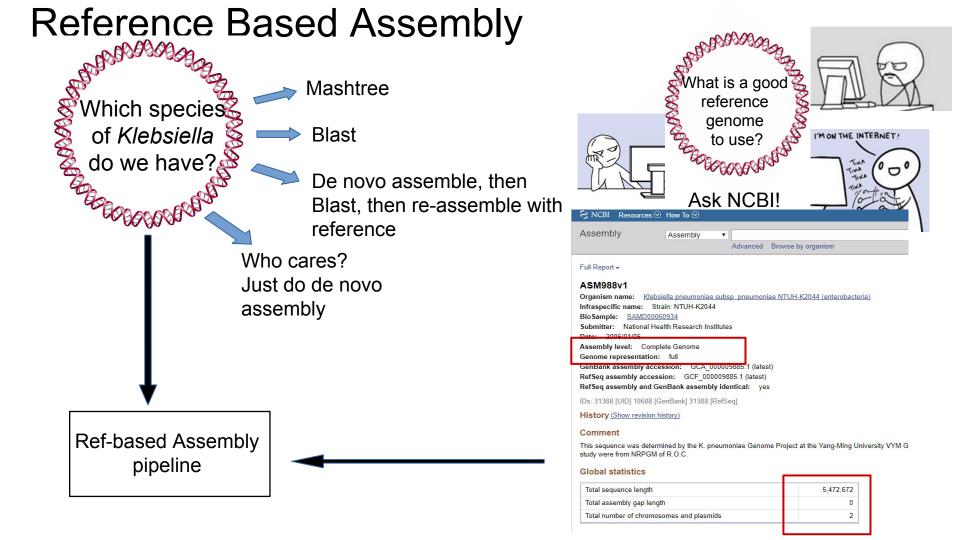

Winner: Trimmomatic


Clean Data, courtesy of Trimmomatic



Philip Ewels, Måns Magnusson, Sverker Lundin and Max Käller Bioinformatics (2016)

Biological Considerations

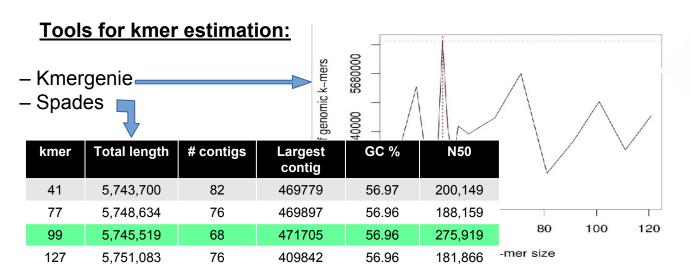

Bacterial genomes are single, circular chromosomes How do Which species of Klebsiella do we have? What is a good reference genome to use?

Ideal End Goal:
An assembly containing only 1
contig
(extra credit if it's circular)

How to detect and remove it and how did it get there?

When/how to check for

contamination in


De novo assembly: Kmer selection

- De Bruijn graph-based assemblers split reads into kmers for graph construction.
- Assembly outcome is heavily influenced by the choice of kmer values.
 - Problematic palindromes
 - Sweet spot between sensitivity and specificity

. Where is this magical sweet spot?

Short answer: it's different for every sample you assemble due to quality

of seq data, genome complexity, etc. Garbage in, garbage out.

Good kmer choice: fewer contigs, higher N50

choice: shorter otal length, more contigs, lower

Preliminary results: comparison of assemblies

Using k=41, determined by kmergenie

Assembler	Run Time (s)	Kmer	# contigs	N50 (KDP)	i otal length (Mbp)	GC %	# N S
Spades	403	41	82	200.1	5.74	56.97	370
Skesa	87	41	111	120.4	5.67	56.98	0
IDBA-UD	56	41	192	66.5	5.75	56.98	0
Tadpole	13.3	41	343	56.0	5.70	56.96	0
IDBA-Hybrid	81	41	190	62.5	5.63	56.98	0
Ref-based (Samtools)	395		2	5,248.5	5.47	58.08	521,755

Caveats to comparison:

- all assemblers compared here support multi-threading. This parameter left as default.
- Only Spades and Tadpole allow for add'n single end read input (not used here)
- Skesa does not include a built-in scaffolder.

Which assembly is best?

Overall, Spades and Skesa are pretty comparable with this kmer value.

Preliminary results: comparison of assemblies

Using k=99, determined by us using Spades

Assemble	Tun Time (3)	Killei	# Cornings	1430 (Kbp)	Total length (Mbp)	00 /0	# 11 3
Spades	421	99	68	275.9	5.745	56.96	170
Skesa	89.5	99	195	60.7	5.668	56.96	0
IDBA-UD	50.8	99	121	119.7	5.748	56.96	0
Tadpole	15.3	99	244	44.5	5.745	56.97	0
IDBA-Hybrid	82.8	99	161	83.5	5.751	56.96	0
Ref-based (Samtools)	395		2	5,248.5	5.47	58.08	521,755
^ -	4 4	•					

<u>Caveats to comparison:</u>

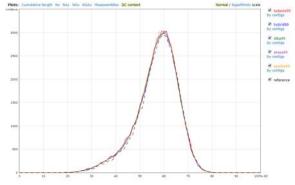
Assembler

- all assemblers compared here support multi-threading. This parameter left as default.
- Only Spades and Tadpole allow for add'n single end read input (not used here)
- Skesa does not include a built-in scaffolder.

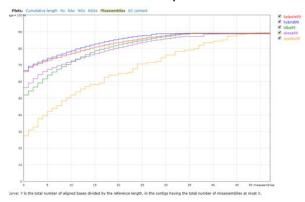
Which assembly is best? Spades (k=99) has lowest

contigs, highest N50 of all de novo assemblies attempted.

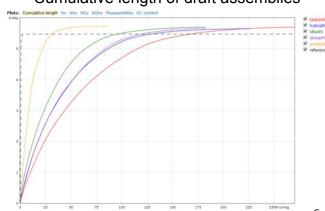
Drawback: also takes the longest to run, has some N's


Preliminary results: Draft QC (Quast)

For draft assemblies where k=99

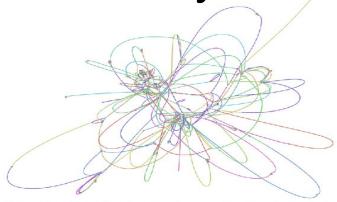

Genome statistics heatmap (m=500)

Genome statistics	tadpole99	hybrid99	idba99	skesa99	spades99
Genome fraction (%)	88.971	88.82	88.823	88.699	89.301
Duplication ratio	1.004	1.001	1.002	1.001	1.003
Largest alignment	97 787	172 993	218 046	115 609	293 196
Total aligned length	4879022	4862260	4864172	4856472	4894465
NGA50	34754	45 738	61 658	44 045	101 399
LGA50	49	34	28	38	15
Misassemblies					
# misassemblies	38	29	36	43	51
Misassembled contigs length	1 468 194	1 324 238	2 292 894	2 119 335	3 799 323
Mismatches					
# mismatches per 100 kbp	652.46	650.16	629.83	651.1	647.1
# indels per 100 kbp	11.6	10.72	10.84	11.93	12.48
# N's per 100 kbp	0	0	0	0	2.91
Statistics without reference					
# contigs	270	225	183	183	86
Largest contig	140 979	172 993	265 440	155 498	471 761
Total length	5 697 803	5 651 712	5 698 915	5665016	5 729 945
Total length (>= 1000 bp)	5 6 7 9 7 5 5	5 6 2 6 5 4 0	5 683 766	5 6 5 7 3 6 9	5717665
Total length (>= 10000 bp)	5 2 3 2 0 6 4	5 306 730	5 400 185	5 384 767	5604812
Total length (>= 50000 bp)	2 553 392	3 473 859	4 2 3 3 8 8 5	3 494 964	5 3 0 9 5 7 9

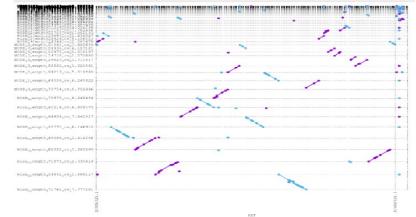

GC content

Misassemblies compared to reference

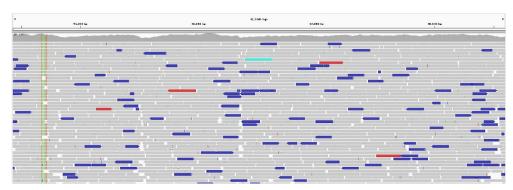
Cumulative length of draft assemblies



Indications of contamination

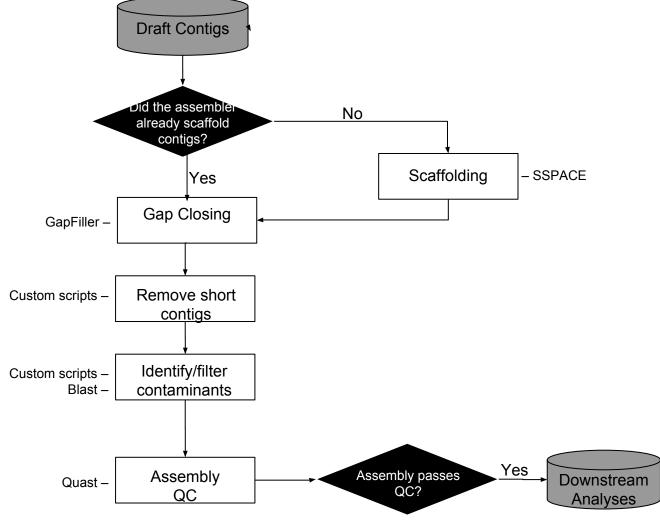

- GC content
- Many misassemblies compared to reference genome*
- Depth coverage anomalies
- Highly fragmented assemblies

Gurevich et al. QUAST: quality assessment tool for genome assemblies, Bioinformatics (2013) 29(8): 1072-1075.


Preliminary results: Visualization

Visualize the de Bruijn graph with Bandage

- Check for circular (ie. closed) chromosome



Visually inspect alignment quality with IGV

Identify indels, duplications, reversals, etc. using Mummer

Post-Assembly Finishing

Questions?

Additional References

- Bankevich A. et al. SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing. Journal of Computational Biology, 2012
- Peng, Y., et al. (2012) IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth, Bioinformatics, 28, 1420-1428.
- Cox, M.P., D.A. Peterson, and P.J. Biggs. 2010. SolexaQA: At-a-glance quality assessment of Illumina second-generation sequencing data. BMC Bioinformatics11:485
- Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: A flexible trimmer for Illumina Sequence Data. Bioinformatics, btu170.
- https://github.com/lh3/seqtk
- https://github.com/FelixKrueger/TrimGalore
- Li H, et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009 Aug 15;25(16):2078-9
- Chikhi R., Medvedev P. Informed and Automated k-Mer Size Selection for Genome Assembly, HiTSeq 2013
- Kurtz S, et al. Versatile and open software for comparing large genomes. Genome Biology (2004), 5:R12.
- James T. Robinson, Helga Thorvaldsdóttir, Wendy Winckler, Mitchell Guttman, Eric S. Lander, Gad Getz, Jill P. Mesirov. Integrative Genomics Viewer. Nature Biotechnology 29, 24–26 (2011)
- Wick R.R., Schultz M.B., Zobel J. & Holt K.E. (2015). Bandage: interactive visualisation of de novogenome assemblies. Bioinformatics, 31(20), 3350-3352.
- https://jgi.doe.gov/data-and-tools/bbtools/
- Joshi NA, Fass JN. (2011). Sickle: A sliding-window, adaptive, quality-based trimming tool for FastQ files (Version 1.33) [Software].

Special Thanks:

- David Weiss (Emory)
- Richa Agarwal (NCBI)
- Team 1 Genome Assembly group

Look for a homework announcement shortly!