Comparative Genomics

Preliminary Results

Team II: Fosfomycin Heteroresistance

Tomáš Brůna, Harshini Chandrashekar, Ragy Haddad, William Harvey, Jane Lew, Sini Nagpal, Eunbi Park, Prachiti P. Prabhu, Vishnu Raghuram, Qi Zhang

Objective

To identify genetic determinants that could be a potential cause for Fosfomycin heteroresistance in the isolates provided.

Resistant	27 (10%)
Heteroresistant	176 (68%)
Susceptible	9 (3%)
N/A	46 (18%)
Total	258

Whole-Genome Based Methods

Preliminary Results

Similarity Analysis

Distance Computation

J(A, B) =

GGATT

TGACG

GTACT

- MASH •
- Jaccard Similarity Coefficient $\frac{|A \cap B|}{|A \cup B|}$

AATCG

AAGCT GGCAT

Clustering

- hclust R package •
- Hierarchical Clustering (Complete Linkage) •
- Dendrogram •

Hierarchical Clustering - Complete Linkage

Hierarchical Clustering - Resistant Groups

Hierarchical Clustering - Outliers Removed

Hierarchical Clustering - Zooming In

Hierarchical Clustering - Zooming In

- Subgroup of extremely similar genomes containing all resistance groups
- All differences between those genomes are worth exploring

Phylogeny Based Methods

Preliminary Results

MLST

- Kleborate a tool for characterising virulence and resistance in Klebsiella
 - MLST sequence type
 - species (e.g. K. pneumoniae, K. quasipneumoniae, K. variicola, etc.)
 - virulence genes: ybt, clb, iro and iuc loci, and the rmpA and rmpA2 hypermucoidy genes
 - antimicrobial resistance genes, including quinolone resistance SNPs and colistin resistance truncations
- [publication still under review]
 - <u>https://github.com/katholt/Kleborate#mlst</u>

Kleborate Results

Antibiotic Resistance Genes -

It screens for resistance genes against the ARG-Annot database of acquired resistance genes

Screened for genes conferring Fosfomycin resistance for all samples

None of the samples reported any particular variant for the Fcyn gene

This is expected as the cause for hetero-resistance is not a mere mutation in genes conferring antibiotic resistance

Kleborate Results

Imprecise MLST

Imprecise ST calls are indicated with -nLV, where n indicates the number of loci that disagree with the ST reported. So
258-1LV indicates a single-locus variant of (SLV) of ST258, i.e. 6/7 loci match ST258.

Conclusion

Since this tool is still under review - validation of results is still needed. We only extracted the Sequence typing results

StringMLST

Ran on a subset

11 samples from each group [since total susceptible samples are 11]

Compared the sequence typing results from StringMLST to those from Kleborate

- 1) For validation of Kleborate results
- 2) To avoid potentially having to download fastq files for 258 genomes input for StringMLST

Result

Both tools reported the same ST for all the tested samples

MLST - Results

MLST - Results

Occurrence of Sequence Types common across all the groups

ST #	Hetero	Sus	Resist	N/A
ST15	8	2	1	2
ST258	91	2	17	37

MLST - Results

Cluster of Interest

Sample Name	Phenotype	ST #
SRR5666393	Hetero	ST258
SRR5666394	Hetero	ST258
SRR5666454	Hetero	ST258
SRR5666475	Hetero	ST258
SRR5666515	Hetero	ST258
SRR5666556	Hetero	ST258
SRR5666481	Resist	ST258
SRR5666554	Resist	ST258
SRR5666594	Resist	ST258
SRR5666597	Resist	ST258
SRR5666541	Suscept	ST258
SRR5666541	Suscept	ST258

MLST using a regular HouseKeeping gene typing scheme did not return results that can help us differentiate between the phenotypes

• We need to change our typing scheme (use cgMLST/wgMLST)

OR/AND

• Start looking at SNPs

kSNP3.0

SNP identification and phylogenetic analysis

- without genome alignment
- without the need for a reference genome

Whole Population

Cluster of Interest

Pan Genome:

- Results from Functional Annotation group to start of Pan and Core Genome Analysis
- Find presence and absence of genes in each group (R,H,S) \Rightarrow make list of unique genes
- Functional analysis of unique genes

Phylogeny:

- cgMLST? No usable profile available for K. pneumoniae
- SNP analysis based on the groups of interest more informative once we append annotations
- kSNP3.0:
 - Annotate cluster of interest
 - Investigate similar clusters
 - Implement pipeline which predicts significant SNPs