

Final Results

Team 1 Gene Prediction Genevieve Brandt, Victoria Caban, Yuntian He, Junyu Li, Yiqiuyi Liu, Yihao Ou, Wenyi Qiu, Casey Smith, Mohit Thakur, Stephen Wist, Qinyu Yue

Georgia Tech

Content

Protein Coding Gene Prediction

Protein Coding Gene Validation

RNA Region Prediction

Final Pipeline

Georgia Tech

Content

Protein Coding Gene Prediction

Protein Coding Gene Validation

RNA Region Prediction

Final Pipeline

Overview of tools and pipeline

Genemark HMM - Background

Average runtime: 1.71 seconds/assembly (after training file) Sensitivity: 93.11% PPV: 93.10%

- Input: assembly file (Fasta)
- Output: gene coordinates (GFF), nucleotide file (Fasta), protein file (Fasta)
- Use a trained model generated by GeneMarkS
- After training, runs very quickly

Genemark HMM - Script (run_gmhmm.pl)


```
use strict;
my $filename = ();
my @SRRname = ();
$filename = $ARGV[0];
unless (-e $filename){
    print "This file \"$filename\" do not exit! Please check it!";
unless (open FILENAME, $filename){
    print "Cannot open this file!!";
@SRRname = <FILENAME>;
chomp @SRRname;
close FILENAME;
foreach my $i (@SRRname){
    `gmhmmp -o $i.HMM.gff -f G -m /projects/data/team1_GenePr<u>ediction/bin/qenema</u>
    rk_suite_linux_64/gmsuite/GeneMark_hmm.mod $i`
```

Genemark HMM - Summary Histogram

Prodigal - Background

Average runtime: 17 seconds/assembly Sensitivity: 94.71% PPV: 94.07%

- Input: assembly file (Fasta)
- Output: gene coordinates (GFF), nucleotide file (Fasta), protein file (Fasta)
- Uses a preset training file it creates
- Simple to install, simple to use

Prodigal - Script (Run_Prodigal.sh)

Currently requires assemblies to be in a directory called "assemblies". Place script next to the assemblies directory to run.

mkdir output nucleotide protein log 2> /dev/null;

```
for file in assemblies/*; do
    base=`echo $file | awk -F'[/.]' '{print $2}'`;
    echo "Running Prodigal on $base";
    Prodigal -i $file -f gff -o output/"$base"_Prodigal.gff -d nucleotide/"$base"_Prodigal.nucleotide.fa -a
protein/"$base"_Prodigal.protein.fa 2> log/"$base"_Prodigal.txt;
    echo "Finished $base on `date`";
done
```

echo "done!";
exit

Prodigal - Summary histogram

Final Prodigal output path: /projects/data/team1_GenePrediction/Prodigal_output_all/

- ./output contains the gene coordinates in gff format
- ./nucleotide contains the nucleotide sequences in fasta format
- ./protein contains the protein sequences in fasta format
- Extra:
 - ./log contains the log files for each run of Prodigal
 - ./assemblies is a symlink of the final assemblies
 - ./archive contains all the above for an older version of the assemblies
 - ./graph is a histogram of predicted number of genes for all assemblies with Prodigal

Final GeneMark HMM output path: /projects/data/team1_GenePrediction/GeneMark_HMM_output/

• Contains the gene coordinates in gff format

Georgia Tech

Content

Protein Coding Gene Prediction

Protein Coding Gene Validation

RNA Region Prediction

Final Pipeline

Workflow

Workflow

Tool

Code: bedtools intersect -f 0.99 -r -a \$f1 -b \$f2

Final Result

Final Result

Method	True Positives	False Positives	False negatives	Sensitivity	PPV
Prodigal	5015.8	437.7	480.6	91.2	92.0
GeneMark HMM	5061.5	507.1	456.4	91.7	91.1
Intersect	4383.4	323.6	1096.4	80.0	93.1
Union	5693.9	618.5	423.1	93.1	90.25

Final Result

Final method

Keeping the union

• Use bedtools intersect to get the unique genes for each tool and combine with the overlap

Code:	bedtools intersect -f 0.99 -r -wa -v -a \$f1
	-b \$f2 > complement.gff

bedtools intersect -f 0.99 -r -a \$f1 -b \$f2

concatenate files

Georgia Tech

Content

Protein Coding Gene Prediction

Protein Coding Gene Validation

RNA Region Prediction

Final Pipeline

Number of predicted tRNA by Aragorn

Convenience: Already part of Prokka

Average running time: seconds per genome

Output: fasta sequences

Average tRNA predicted: 77

RNAmmer

• Average running time: 1 min / genome (compared to ~3 mins without scaffold)

Average rRNA: 7

Introduction

Infernal

Ab initio tool based on hidden markov models Uses primary and secondary structure information for greater accuracy

- + Detection of remote homologs
- Slow (for our purposes)

Rfam

Database of RNA family covariance models (and other RNA information) RNA family selection:

- 1. Filter in families with sequences reported for all Rfam Klebsiella pneumoniae species
- 2. Choose RNA family whose function may contribute to heteroresistance Result \rightarrow istR (Rfam ID: RF01400)

Infernal & Rfam

istR

Inhibitor of SOS-induced toxicity by RNA

istR is an antitoxin against TisB

Normal physiological conditions \rightarrow istR inhibits TisB toxicity

DNA Damage (SOS response) \rightarrow TisB overexpression depletes istR, cells grow slowly rather than die

Possible role in Klebsiella pneumoniae spp. heteroresistance.

27 March 2018

ncRNA Validation

Georgia Tech

Difference from validation of protein coding genes:

- 1. Method: sRNA -- Reference based method, hard to validate
- 2. Query sequence: tRNA & rRNA -- highly conserved
- 3. Focus: Second structure > sequence
- 4. Purpose: confirm existence > predict gene
- 5. Assembly level: scaffolds vs complete

ncRNA Validation

complete level assemblyTypeRefSeqSize (Mb)

туре	RetSeq	Size (IVID)	GC%	rkina	trina
Chr	NZ_CP009775.1	5.52	57.3	25	88
Chr	NZ CP011976.1	5.39	57.4	25	87
Chr	<u>NZ CP011976.1</u>	5.39	57.4	25	87
Chr	<u>NZ_CP015822.1</u>	5.45	57.3	25	88
Chr	<u>NZ CP022573.1</u>	5.39	57.4	25	88

Our results (average):

rRNA: 7

tRNA: 77

scaffolds level assembly

Scaffolds	RefSeq	Size (Mb)	GC%	rRNA	tRNA
3	NZ AMLM0000000.1	5.75	56.9	22	89
30	NZ_AMRH0000000.2	5.77	56.9	6	72
51	NZ ACZD0000000.1	5.45	57.2	3	62
72	NZ_JRGE0000000.1	3.07	57	2	45
120	NZ_LEZX0000000.1	5.85	56.8	18	92
				ubo	

Georgia Tech

Content

Protein Coding Gene Prediction

Protein Coding Gene Validation

RNA Region prediction

Final Pipeline

