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Introduction - Project
● Initial data: 262 Klebsiella un-assembled genomes of unknown species

● Project goal: Use genetic determinants of antibiotic resistance to further 
understand heteroresistance
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Introduction - Gene Prediction
What is Gene Prediction?

● The process of finding regions of DNA that encode genes



Introduction - Gene Prediction: Our Plan
● Divide into three groups

○ Comparative / Similarity-Based
○ Ab Initio
○ Non Coding RNA

● Each group will:
○ Explore their specific task
○ Find tools

■ Specific to our data
○ Test the tools
○ Compare the tools



Comparative Approach
Description, Tools, and Strategy



Comparative Methods
● Comparative or similarity based gene prediction

● Using Known Genes to predict New Genes

● Motivation:
○ Recently, the number of sequenced genomes has increased 

drastically
○ 99% of genes have homologous partner
○ 80% have orthologous partner
○ 85 % identity (protein coding DNA) versus 69 % identity (intronic DNA)

Comparative Approach



Problem
Given a known gene and an unannotated genome sequence, find a set of 
substrings in the genomic sequence whose concatenation best matches the 
known gene

  Comparing genes in two genomes

● Since klebsiella is a prokaryote (does not have introns) 
● We won’t have splice alignment problem

Reference (Known)

Target (Unknown)

Comparative Approach



Sequence alignment
● Sequence alignment is a way of arranging the sequences to identify 

regions of similarity that may be results of:
○ Functional

○ Structural

○ Evolutionary relationships

● Two methods based on similarity research are:
○ Local alignment

○ Global alignment

Comparative Approach

https://en.wikipedia.org/wiki/Evolution


Local Alignment
● Try to match your query with a substring of your reference

● Smith–Waterman algorithm

2 mismatch , 0 gaps

Comparative Approach



Global Alignment
● Forces the alignment to span the entire length of all query sequences
● Most useful when the sequences are similar and roughly equal size
● May end up with a lot of gaps 
● Needleman–Wunsch algorithm
● Based on Dynamic programing

1 mismatch , 2 gaps of length 4 and 2

Comparative Approach



Strategy

Comparative Approach

SPG2
TwinScan

GenomeScan

BLAST

Comparative 
Based

Exploratory 
Research

Find species of 
the samples Testing Tools



● Input format is FastA

● Output format is geneid, gff, XML 

● It takes one DNA sequence (target) and several DNA sequences 

(references) which have partial Tblastx matches to it (i.e. protein level)

● Very efficient in terms of speed and memory usage

Comparative Approach



● Begins with local alignments between a unknown genome and a database 

of reference sequences

● Twinscan is currently available for Mammals, Caenorhabditis (worm), 

Dicot plants, and Cryptococci



● Predicting the locations and exon-intron structures of genes in genomic 

sequences

● Input: 
○ Unknown DNA sequence

○ Reference sequence/s (as proteins) in FastA format

● Predicts gene structure which corresponds to maximum probability 

conditional on similarity information



Comparative methods Pros / Cons 

● Fast implementation

● High accuracy

● Efficient in terms of memory usage

● Reference dependent

● Does not guarantee optimal alignment 

● Returns only one best alignment 



Ab Initio
Description, Tools, and Strategy



Ab-Initio Methods

Predict gene based on given sequence alone
Rely on two major features:

1. Gene signals (start and stop codon, intron splice signals, codon structure, 
etc.)

2. Statistical description of coding regions.

Ab-Initio Approach



Hidden Markov Model (HMM)
● Machine with k hidden states (F and B) proceeding in a sequence of 

steps
● In each step emission of a symbol (H or T) while being in one of its hidden 

states
● In a certain state makes two decisions:

1. Which symbol to emit
2. Which hidden state to move next

Ab-Initio Approach



Hidden Markov Model (HMM)
Transition : changing from hidden state I to 
hidden state k

Emission : emission of symbol when the HMM is 
in state k

Ab-Initio Approach



Central Issues in HMM
Evaluation Problem: Given, sequence of visible symbols VT, what is the 
probability that this VT was generated by  (HMM)? ( P(VT| ) to be calculated)

Decoding problem: What’s the most likely sequence of hidden states which 
led to the generation of VT?

Learning Problem: Using large number of training sequences, estimate 
transition probabilities (both – between hidden states as well as emission 
symbols)

Ab-Initio Approach



Gene prediction using HMM

Ab-Initio Approach



Gene prediction using HMM
● kth order model -  in which the conditional probability of a particular 

sequence position depends on k previous positions.
● A zero-order Markov model assumes each base occurs independently 

with a given probability.
● A second-order model looks at the preceding two bases to determine 

which base follows, which is more characteristic of codons in a coding 
sequence.

● the higher the order of a Markov model, the more accurately it can 
predict a gene.

Ab-Initio Approach



Gene prediction using HMM ● More effective 
Markov models 
built in sets of 
three 
nucleotides, 
describing 
non-random 
distributions of 
trimers or 
hexamers, and 
so on.

● The parameters 
of a Markov 
model have to 
be trained

Ab-Initio ApproachFig. A Simplified second-order HMM for prokaryotic gene prediction



Gene prediction using HMM
● Statistical analyses have shown that pairs of codons tend to correlate.
● Frequency of six unique nucleotides appearing together in a coding 

region is much higher than by random chance.
● Therefore, a fifth-order Markov model, can detect nucleotide correlations 

found in coding regions more accurately.
● Drawback – method’s efficacy is limited (in case of short gene sequences – 

not enough hexamers)
● Overcome using Interpolated Markov Model (IMM).

Ab-Initio Approach



GeneMark
● A suite of gene prediction programs based on the fifth-order HMMs
● The main program – GeneMark.hmm – trained on a number of complete 

microbial genomes
● If the sequence to be predicted is from a non-listed organism, the most 

closely related organism can be chosen as the basis for computation.
● If new organism – GeneMarkS can be used (self-trained program). Longer 

than 50kb sequences to be provided.
● If shorter sequences – GeneMark heuristic program can be used with loss 

of some accuracy.

 
Ab-Initio Approach



Glimmer

● Gene Locator and Interpolated Markov Modeler
● Developed at ‘The Institute of Genomic Research (TIGR)’
● UNIX program that uses the IMM algorithm to predict potential coding 

regions
● Two Steps –

1. Model Building
2. Computation

Ab-Initio Approach



Gene Prediction Using Log-likelihood
A Simplistic Explanation:

● For a random sequence N1N2N3N4N5N6N7, P(Ni) = ¼  where Ni Є {A, T, C, G}
● For a putative coding sequence, assume the following probabilities: 

 

● P(random sequence) = (¼)7 = 0.00006103515
● P(coding sequence,say ATGGTTC) = 0.3*0.1*0.7*1.0*1.0*0.1*0.1 = 0.00021 Ab-Initio Approach

1 2 3 4 5 6 7

A 0.3 0.6 0.1 0.00 0.00 0.6 0.7

C 0.2 0.2 0.1 0.00 0.00 0.2 0.1

G 0.1 0.1 0.7 1.00 0.00 0.1 0.1

T 0.4 0.1 0.1 0.00 1.00 0.1 0.1



Gene Prediction Using Log-likelihood
● The ratio between the probabilities of the putative coding sequence and 

the random sequence is the likelihood ratio.
● The logarithm of this ratio is the log-likelihood ratio �  
● In this case, log(P(c)/P(r)) = 1.78
● This score is

○ 0, if both the sequences are equally likely
○ >0, if the sequence is more likely to be a coding region than a random sequence
○ <0, if the sequence is less likely to be in a coding region than a random sequence

● A more advanced modification of the above, combined with a lot of 
heuristics is what PRODIGAL implements

Ab-Initio Approach



PRODIGAL - in a nutshell
● PROkaryotic DYnamic programming Gene-finding ALgorithm

Ab-Initio Approach

Constructing a 
training set for 
protein coding

Building 
log-likelihood 
coding statistics

Sharpening 
coding scores

Length factor to 
coding

Iterative start 
training

Final dynamic 
programming



PRODIGAL
Advantages:

● Extremely fast and lightweight
● Highly Specific - False positive rate < 5%
● A distinct advantage of Prodigal over other gene-finders:

○ Performs well with high GC content genomes

Disadvantages:

● The results from Prodigal could be biased, because it was developed 
using results from GenBank annotation and using a small set of initial 
genomes

● Recognition of short and atypical genes needs improvement 
Ab-Initio Approach



Ab Initio - Proposed Strategy

GeneMarkS-2
GLIMMER
Prodigal

Supervised
Unsupervised

Ab Initio
Exploratory 

Research

Gene 
Prediction
Method

Tools to be 
used

Ab-Initio Approach



Non-Coding RNA

Description, Tools, and Strategy



Non Coding RNA
● RNA that gets transcribed from a DNA template but not 

translated into a protein
● Secondary Structure plays a key role
● Three main classes in bacteria:

○ tRNA/tmRNA
○ rRNA
○ sRNA

Non Coding Approach



Non Coding RNA - Bacteria

Non Coding Approach

● Role of ncRNA in bacterial genomes:
○ Protein synthesis/Translation (tRNA and rRNA)
○ Gene regulation (sRNA)
○ Both of them can be related to antibiotic resistance



Non Coding RNA - Tools: Tool Selection
● Data: 260+ assembled Klebsiella genomes (unknown species)

● Needs:
○ Speed
○ Accuracy
○ Specific to ncRNAs in Prokaryotic genomes
○ Preferably no need for reference genome

Non Coding Approach



Non Coding RNA - Tools
● rRNA

○ RNAmmer
■ Using data from rRNA database
■ Higher Novelty and <1 min/genome
■ Online tool has limitation

○ Silva
■ Using data from rRNA database
■ Many features online

● tRNA
○ tRNAscan-SE 2.0

■ Better at finding weird tRNAs

■ Accurate, low error rate and ~1.8 mb/min

○ Aragorn
■ tRNA and tmRNA
■ Error and speed are CG content dependent

■ 5X faster with 40-60% CG

● sRNA
○ Rfam

■ Database of ncRNA
■ Group ncRNA into families using multiple 

sequence alignments and covariance 
models



1. Understand 
background

2. Tool search

Non Coding RNA - Proposed Strategy

Criteria for 
comparison

RNAmmer
Silva

tRNAscan
Aragorn

Rfam

ncRNA
Exploratory 

Research
Tool Testing

Tool  
Comparison

Non Coding Approach



Proposed Strategy Overview
Workflow Diagram
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Questions?
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