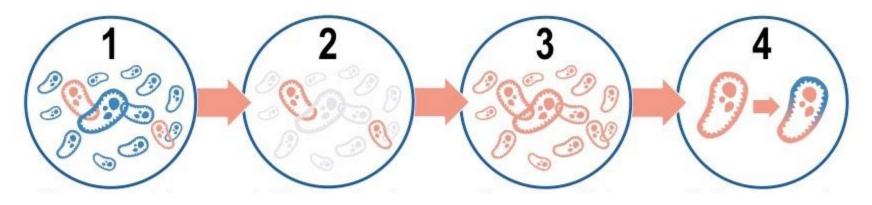
Gene Prediction

Background and Strategy Team II

Beatriz E Saldana, Parisa Y Zowj, Ayush Semwal, Siu Lung Ng, Sini Nagpal, Sarthak Sharma, Rong Jin, Jiani Long, Qi Zhang

• Initial data: 262 Klebsiella un-assembled genomes of unknown species

• Project goal: Use genetic determinants of antibiotic resistance to further understand heteroresistance



- From raw reads to biological knowledge:
 - Genome assembly
 - Genome annotation
 - Data analysis

- From raw reads to biological knowledge:
 - Genome assembly
 - Genome annotation
 - Gene Prediction
 - Functional Annotation
 - Data analysis

- From raw reads to biological knowledge:
 - Genome assembly
 - Genome annotation

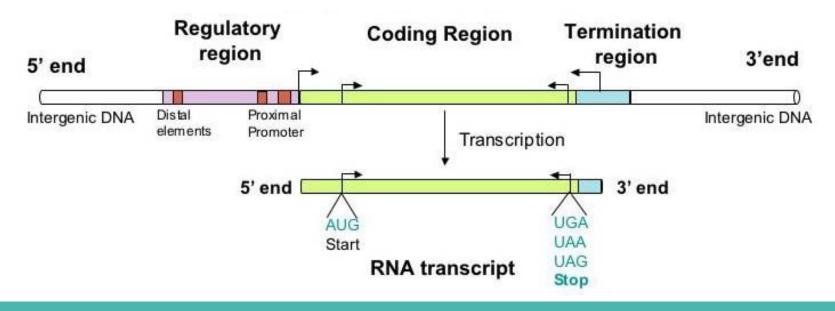
Gene Prediction

- Functional Annotation
- Data analysis

Introduction - Gene Prediction

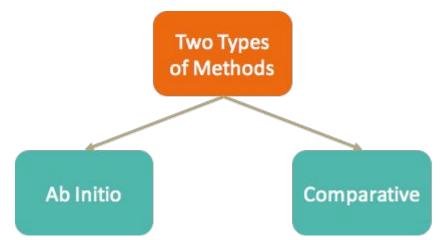
What is Gene Prediction?

• The process of finding regions of DNA that encode genes



Introduction - Gene Prediction: Our Plan

- Divide into three groups
 - Comparative / Similarity-Based
 - Ab Initio
 - Non Coding RNA
- Each group will:
 - Explore their specific task
 - Find tools
 - Specific to our data
 - Test the tools
 - Compare the tools



Comparative Approach

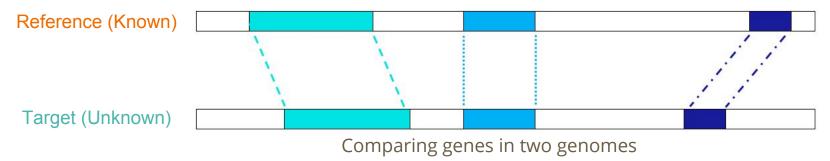
Description, Tools, and Strategy

Comparative Methods

- Comparative or *similarity* based gene prediction
- Using Known Genes to predict New Genes
- Motivation:
 - Recently, the number of sequenced genomes has increased drastically
 - 99% of genes have homologous partner
 - 80% have orthologous partner
 - 85 % identity (protein coding DNA) versus 69 % identity (intronic DNA)

Problem

Given a <u>known gene</u> and an <u>unannotated genome sequence</u>, find a set of substrings in the genomic sequence whose concatenation best matches the known gene



- Since klebsiella is a prokaryote (does not have introns)
- We won't have splice alignment problem

Sequence alignment

- Sequence alignment is a way of arranging the sequences to identify regions of similarity that may be results of:
 - Functional
 - Structural
 - Evolutionary relationships
- Two methods based on similarity research are:
 - Local alignment
 - Global alignment

Local Alignment

- Try to match your query with a <u>substring</u> of your reference
- Smith–Waterman algorithm

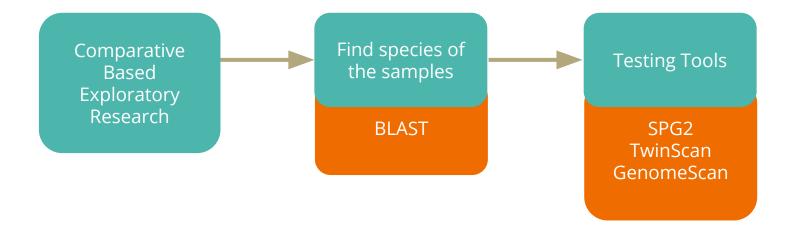
2 mismatch, 0 gaps

Global Alignment

- Forces the alignment to span the <u>entire</u> length of all query sequences
- Most useful when the sequences are <u>similar</u> and roughly <u>equal size</u>
- May end up with <u>a lot of gaps</u>
- Needleman–Wunsch algorithm
- Based on Dynamic programing

1 mismatch, 2 gaps of length 4 and 2

Strategy



Comparative Approach

Genome BioInformatics Research Lab

Help | News | People | Research Software Publications | Links Resources & Datasets | Gene Predictions | Seminars & Courses

CRG + A + Software + sgp2

sgp2 HomePage

- Input format is FastA
- Output format is geneid, gff, XML
- It takes one DNA sequence (target) and several DNA sequences (references) which have partial Tblastx matches to it (i.e. protein level)
- Very efficient in terms of speed and memory usage

- Begins with local alignments between a unknown genome and a database of reference sequences
- Twinscan is currently available for Mammals, Caenorhabditis (worm), Dicot plants, and Cryptococci

- Predicting the locations and exon-intron structures of genes in genomic sequences
- Input:
 - Unknown DNA sequence
 - Reference sequence/s (as proteins) in FastA format
- Predicts gene structure which corresponds to maximum probability conditional on similarity information

Comparative methods Pros / Cons

- Fast implementation
- High accuracy
- Efficient in terms of memory usage
- Reference dependent
- Does not guarantee optimal alignment
- Returns only one best alignment

Ab Initio

— Description, Tools, and Strategy —

Ab-Initio Methods

Predict gene based on given sequence alone

Rely on two major features:

- 1. Gene signals (start and stop codon, intron splice signals, codon structure, etc.)
- 2. Statistical description of coding regions.

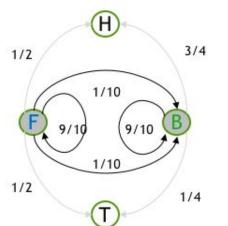
Hidden Markov Model (HMM)

- Machine with k hidden states (F and B) proceeding in a sequence of steps
- In each step emission of a symbol (H or T) while being in one of its hidden states
- In a certain state makes two decisions:
 - 1. Which symbol to emit
 - 2. Which hidden state to move next

Hidden Markov Model (HMM)

Transition : changing from hidden state I to hidden state k

Emission : emission of symbol when the HMM is in state k



	F	В
F	0.9	0.1
В	0.1	0.9

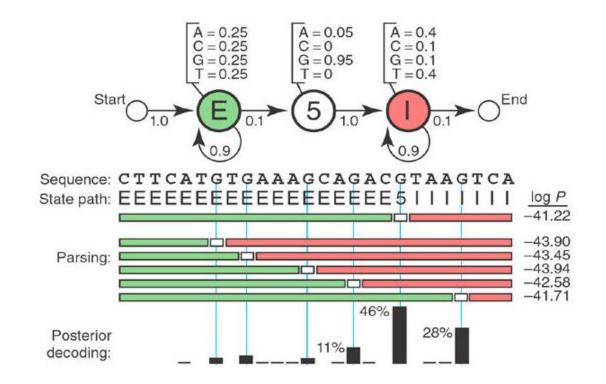
	Н	T 0.50		
F	0.50			
В	0.75	0.25		

Central Issues in HMM

Evaluation Problem: Given, sequence of visible symbols V^T , what is the probability that this V^T was generated by Θ (HMM)? ($P(V^T | \Theta)$ to be calculated)

Decoding problem: What's the most likely sequence of hidden states which led to the generation of V^{T} ?

Learning Problem: Using large number of training sequences, estimate transition probabilities (both – between hidden states as well as emission symbols)



Ab-Initio Approach

- **kth order model** in which the conditional probability of a particular sequence position depends on *k* previous positions.
- A zero-order Markov model assumes each base occurs independently with a given probability.
- A second-order model looks at the preceding two bases to determine which base follows, which is more characteristic of codons in a coding sequence.
- the higher the order of a Markov model, the more accurately it can predict a gene.

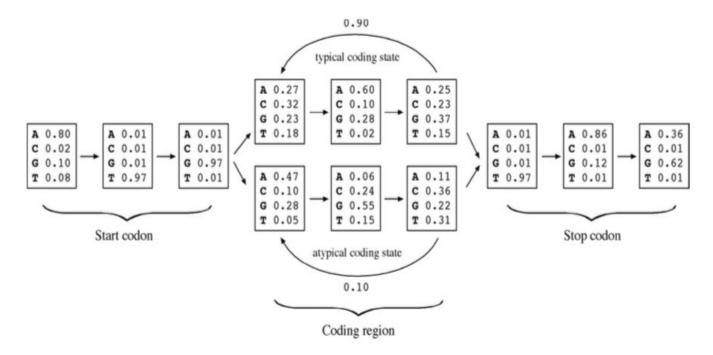


Fig. A Simplified second-order HMM for prokaryotic gene prediction

- More effective Markov models built in sets of three nucleotides, describing non-random distributions of trimers or hexamers, and so on.
- The parameters of a Markov model have to be trained

Ab-Initio Approach

- Statistical analyses have shown that pairs of codons tend to correlate.
- Frequency of six unique nucleotides appearing together in a coding region is much higher than by random chance.
- Therefore, a fifth-order Markov model, can detect nucleotide correlations found in coding regions more accurately.
- Drawback method's efficacy is limited (in case of short gene sequences not enough hexamers)
- Overcome using Interpolated Markov Model (IMM).

GeneMark

- A suite of gene prediction programs based on the fifth-order HMMs
- The main program **GeneMark.hmm** trained on a number of complete microbial genomes
- If the sequence to be predicted is from a non-listed organism, the most closely related organism can be chosen as the basis for computation.
- If new organism **GeneMarkS** can be used (self-trained program). Longer than 50kb sequences to be provided.
- If shorter sequences GeneMark heuristic program can be used with loss of some accuracy.

Glimmer

- Gene Locator and Interpolated Markov Modeler
- Developed at 'The Institute of Genomic Research (TIGR)'
- UNIX program that uses the IMM algorithm to predict potential coding regions
- Two Steps
 - 1. Model Building
 - 2. Computation

Gene Prediction Using Log-likelihood

A Simplistic Explanation:

- For a random sequence $N_1 N_2 N_3 N_4 N_5 N_6 N_7$, $P(N_i) = \frac{1}{4}$ where $N_i \in \{A, T, C, G\}$
- For a putative coding sequence, assume the following probabilities:

	1	2	3	4	5	6	7
А	0.3	0.6	0.1	0.00	0.00	0.6	0.7
С	0.2	0.2	0.1	0.00	0.00	0.2	0.1
G	0.1	0.1	0.7	1.00	0.00	0.1	0.1
Т	0.4	0.1	0.1	0.00	1.00	0.1	0.1

- $P(random \ sequence) = (\frac{1}{4})^7 = 0.00006103515$
- *P*(coding sequence,say ATGGTTC) = 0.3*0.1*0.7*1.0*1.0*0.1*0.1 = 0.00021

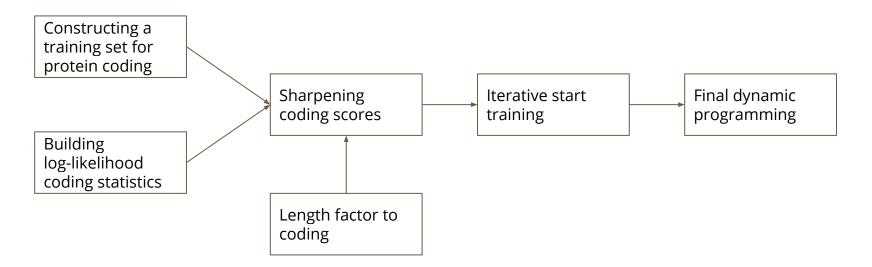
Ab-Initio Approach

Gene Prediction Using Log-likelihood

- The ratio between the probabilities of the putative coding sequence and the random sequence is the likelihood ratio.
- The logarithm of this ratio is the log-likelihood ratio
- In this case, log(P(c)/P(r)) = 1.78
- This score is
 - **0**, if both the sequences are **equally** likely
 - **>0**, if the sequence is **more** likely to be a **coding region** than a random sequence
 - <0, if the sequence is **less** likely to be in a **coding region** than a random sequence
- A more advanced modification of the above, combined with a lot of heuristics is what PRODIGAL implements

PRODIGAL - in a nutshell

• PROkaryotic DYnamic programming Gene-finding ALgorithm



PRODIGAL

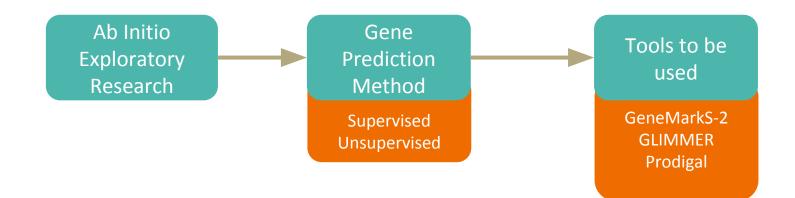
Advantages:

- Extremely fast and lightweight
- Highly Specific False positive rate < 5%
- A distinct advantage of Prodigal over other gene-finders:
 - Performs well with high GC content genomes

Disadvantages:

- The results from Prodigal could be biased, because it was developed using results from GenBank annotation and using a small set of initial genomes
- Recognition of short and atypical genes needs improvement

Ab Initio - Proposed Strategy



Ab-Initio Approach

Non-Coding RNA

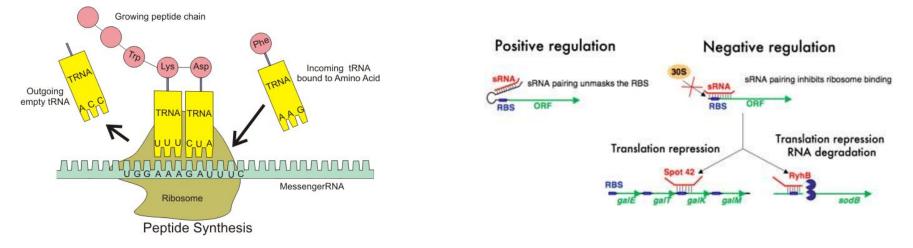
Description, Tools, and Strategy

Non Coding RNA

- RNA that gets transcribed from a DNA template but not translated into a protein
- Secondary Structure plays a key role
- Three main classes in bacteria:
 - tRNA/tmRNA
 - rRNA
 - o sRNA

Non Coding RNA - Bacteria

- Role of ncRNA in bacterial genomes:
 - Protein synthesis/Translation (tRNA and rRNA)
 - Gene regulation (sRNA)
 - Both of them can be related to antibiotic resistance



Non Coding RNA - Tools: Tool Selection

- Data: 260+ assembled *Klebsiella* genomes (unknown species)
- Needs:
 - Speed
 - Accuracy
 - Specific to ncRNAs in Prokaryotic genomes
 - Preferably no need for reference genome

Non Coding RNA - Tools

• rRNA

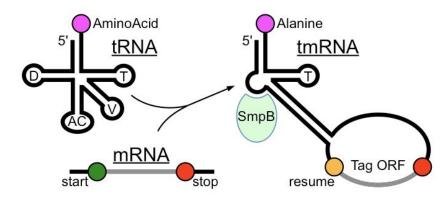
- RNAmmer
 - Using data from rRNA database
 - Higher Novelty and <1 min/genome
 - Online tool has limitation
- o Silva
 - Using data from rRNA database
 - Many features online

• tRNA

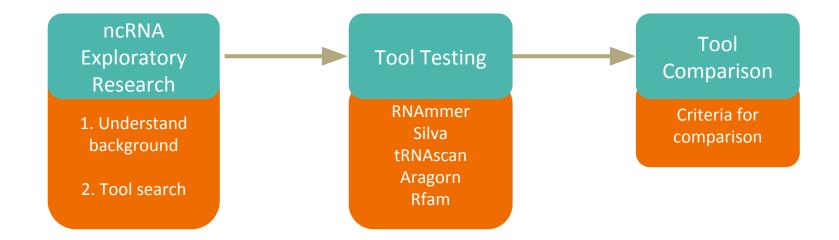
- tRNAscan-SE 2.0
 - Better at finding weird tRNAs
 - Accurate, low error rate and ~1.8 mb/min
- Aragorn
 - tRNA and tmRNA
 - Error and speed are CG content dependent
 - 5X faster with 40-60% CG

sRNA

- o Rfam
 - Database of ncRNA
 - Group ncRNA into families using multiple sequence alignments and covariance models

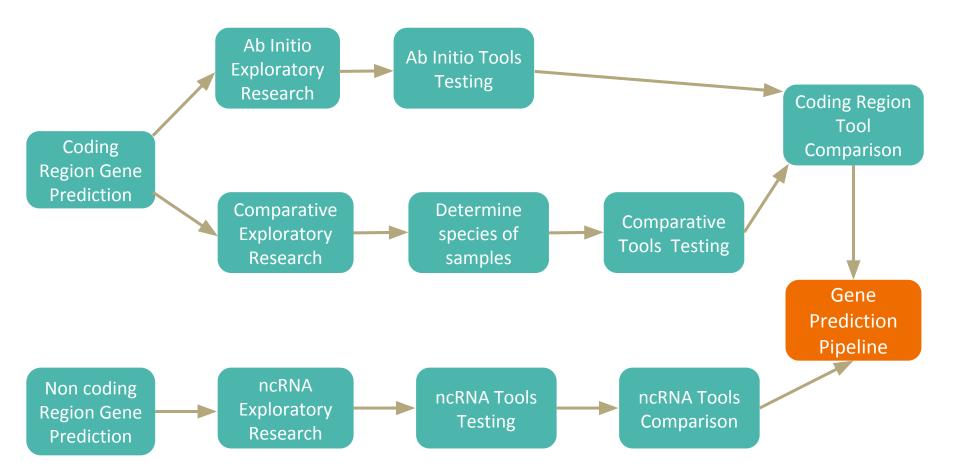


Non Coding RNA - Proposed Strategy



Proposed Strategy Overview

Workflow Diagram



References

- Wahlestedt, Claes. "Targeting long non-coding RNA to therapeutically upregulate gene expression." *Nature reviews Drug discovery* 12.6 (2013): 433-446.
- Nadya Dimitrova, and Thales Papagiannakopoulos. 7.345 Non-coding RNAs: Junk or Critical Regulators in Health and Disease?. Spring 2012. Massachusetts Institute of Technology: MIT OpenCourseWare, <u>https://ocw.mit.edu</u>. License: <u>Creative Commons BY-NC-SA</u>.
- Wilusz, Jeremy E., Hongjae Sunwoo, and David L. Spector. "Long noncoding RNAs: functional surprises from the RNA world." *Genes & development* 23.13 (2009): 1494-1504.
- Flicek P, Keibler E, Hu P, Korf I, Brent MR. Leveraging the Mouse Genome for Gene Prediction in Human: From Whole-Genome Shotgun Reads to a Global Synteny Map. *Genome Research*. 2003;13(1):46-54.
- Parra, Genís et al. "Comparative Gene Prediction in Human and Mouse." *Genome Research* 13.1 (2003): 108–117. PMC. Web. 22 Feb. 2018.